
ISSN 2249-4553 

 

 

 

 

 

JOURNAL OF 

 

 

 

 

 

 

 

 

 

 

 

 

Volume 31 

December 2020 

 

THE KERALA STATISTICAL 

ASSOCIATION 



JOURNAL OF THE KERALA STATISTICAL ASSOCIATION
(A Publication of the Kerala Statistical Association)

Chief Editor Managing Editor
K Jayakumar Manoj Chacko

Associate Editors

T J Kozubowski Shalabh
K Muralidharan K K Jose

The Editors invite original research papers, typed with wide margins
(LaTeX template is available at www.ksa.org.in) for possible publication
in this journal. Though non-members also may submit papers, at the time
of the publication of their paper, the Kerala Statistical Association wishes
them to be its members. Each author of this journal will be given one free
copy of the volume/number of the journal in which his/her paper appears
unless advance order of reprints is made.

From the papers published in each volume of this journal the best paper
is selected for granting “Professor T.S.K. Moothathu Best Paper
Award” with a fellowship.

All comunications relating to the publication of papers and subscription
of the journal are to be addressed to “Manoj Chacko (Managing Editor),
Department of Statistics, University of Kerala, Trivandrum - 695 581”,
e-mail: editor.jksa@gmail.com.



JOURNAL OF THE KERALA STATISTICAL ASSOCIATION
Volume 31, December 2020 (Reg. No. M - 6 - 11573/80)

CONTENTS

Debasis Kundu
A General Method of Construction of a Bivariate
Lifetime Distribution with a Singular Component 1

Jisha Varghese, Krishna E and K.K. Jose
Generalized Lehmann Alternative Type II Family of
Distributions and Their Applications 29

Divya G Nair and K. Muralidharan
Comparison of Machine Learning Techniques for
Recommender Systems for Financial Data 68

Sulochana B and Victorbabu B. Re.
Measure of Slope Rotatability for Second Order
Response Surface Designs Under Tri-Diagonal Correlation
Error Structure Using Central Composite Designs 85

EDITORIAL OFFICE

DEPARTMENT OF STATISTICS
UNIVERSITY OF KERALA

KARIAVATTOM, TRIVANDRUM-695 581



Journal of the Kerala Statistical Association
Vol.31, December 2020, 01-28 ISSN 2249-4553

A General Method of Construction of a

Bivariate Lifetime Distribution with a

Singular Component

Debasis Kundu∗

Department of Mathematics and Statistics,

Indian Institute of Technology Kanpur, India.

ABSTRACT

Marshall-Olkin bivariate exponential distribution is the most popular bivari-

ate distribution with a singular component. Since then several other bivariate

distributions with a singular component have been introduced in the literature.

It is observed that there are mainly two main approaches to construct a bivari-

ate distribution with a singular component. In this paper we have proposed a

general method to construct a bivariate distribution with a singular component.

All the existing bivariate distributions with a singular component can be ob-

tained using this method. Moreover, more flexible bivariate distributions with

a singular component also can be constructed using this method. It is a very

simple procedure based on mixing. Using this approach, we have considered one

special case, namely bivariate Weibull distribution, in detail. We have derived

several properties of the proposed bivariate Weibull distribution and it seems

to be more flexible than the popular Marshall-Olkin bivariate Weibull distri-

bution. Maximum likelihood estimators can be obtained quite conveniently in

this case. It can be used to model dependent competing risks data and it can

be generalized to the multivariate set up also.

∗kundu@iitk.ac.in
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1 Introduction

Analyzing bivariate or multivariate data, particularly when they are dependent is

a very important problem. It arises in different applications. Several bivariate and

multivariate distributions have been proposed in the statistical literature. An exten-

sive amount of work has been done in constructing different bivariate distributions

developing their properties and providing various inferential procedures. Some of

the well known bivariate distributions are bivariate normal, bivariate log-normal,

bivariate-t, bivariate extreme value, bivariate gamma, bivariate exponential, bivari-

ate logistic, bivariate Cauchy, bivariate beta, bivariate skew normal etc. An excellent

review of all these bivariate distributions; method of constructions, properties and

their applications can be obtained in the book by Balakrishnan and Lai (2009).

Some of the recently developed bivariate or multivariate distributions are bivari-

ate Birnbaum-Saunders distribution, bivariate weighted exponential distribution,

bivariate generalized exponential distribution etc., see for example Kundu, Balakr-

ishnan and Jamalizadeh (2010), Al-Mutairi, Ghitany and Kundu (2011), Kundu and

Gupta (2011) and see the references cited therein.

In all the above cases, the distributions have absolutely continuous cumulative

distribution function (CDF). It means that the bivariate distribution function has

a proper probability density function (PDF) with respect to a two dimensional

Lebesgue measure. Moreover, if X and Y denote the marginals of the bivariate

random variable (X,Y ), then P (X = Y ) = 0. Hence if there are ties in the data set,

and if it is known that P (X = Y ) > 0, then none of these distributions can be used

to analyze these data sets. In many practical examples it has been observed that

there are ties in the data set. It may happen due to truncation, or it may happen

due to the physical process by which the data has been obtained, and it is known

from the process that P (X = Y ) > 0. Hence, to analyze these data sets we need a
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bivariate model so that P (X = Y ) > 0.

Marshall and Olkin (1967) first introduced such a model, and popularly it is

known as the Marshall-Olkin bivariate exponential (MOBE) model. It is a bivariate

distribution where the marginals are exponentials and in this case P (X = Y ) > 0.

It has a very interesting physical interpretation and it has an interesting connection

with the homogeneous Poisson process also. In the same paper they have introduced

bivariate Weibull model also, where the marginals are Weibull and in this case also

P (X = Y ) > 0. From now on we call this as the Marshall-Olkin bivariate Weibull

(MOBW) model. For several properties and inferential issues one is referred to

Lu (1989, 1992), Kundu and Dey (2009), Kundu and Gupta (2013) and see the

references cited therein.

Several other such bivariate distributions have been introduced in the litera-

ture. For example, Barreto-Souza and Lemonte (2013) introduced bivariate Ku-

maraswamy (BVK), bivariate Pareto (BVP), bivariate double generalized exponen-

tial (BDGE), bivariate exponentiated Frechet (BEF), bivariate Gumbel (BVG) dis-

tributions etc. Kundu and Gupta (2009) proposed the bivariate generalized expo-

nential (BVGE) distribution. Along the same line Sarhan-Balakrishnan bivariate

(SBBV) distribution was suggested by Sarhan and Balakrishnan (2007) and modified

Sarhan-Balakrishnan bivariate (MSBB) distribution by Kundu and Gupta (2010).

Similarly, Sarhan et al. (2011) proposed bivariate generalized linear failure rate

distribution and Muhammed (2016) provided the bivariate inverse Weibull distribu-

tion. In all these cases the authors provided the method of constructions, derived

several properties and developed inference procedures. See for example the recent

article by Franco, Vivo and Kundu (2020) in this respect.

It is observed that there are mainly two methods of constructions and they

are mainly (a) minimization approach proposed by Marshall and Olkin (1967) and

(b) maximization approach proposed by Kundu and Gupta (2009). We will briefly

describe them in Section 2. The aim of this paper is two fold. First we introduce a

general method of construction of a bivariate distribution with a singular component.

The method is very simple, and it is based on the mixture representation. All the
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existing bivariate distributions with a singular component can be obtained by using

this method. Moreover, other more general bivariate distributions with a singular

component can be obtained using the proposed method, which cannot be obtained

by using the above two methods. The second aim of this paper is to consider

one specific case, namely bivariate Weibull distribution with a singular component,

which can be obtained by using the proposed method and discuss its properties.

We call it as the BWE distribution. The well known MOBE and MOBW can be

obtained as special cases of the proposed BWE distribution. It is observed that the

maximum likelihood estimators of the unknown parameters can be obtained quite

conveniently. Moreover, the proposed BWE model can be used quite conveniently

to model dependent competing risks data.

The rest of the paper is organized as follows. In Section 2, we provide a brief

background of the two different constructions of a bivariate distribution with a

singular component. The general method is proposed in Section 3. The specific

case, namely the BWE distribution is discussed in detail in Section 4. The analyses

of two data sets have been presented in Section 5, and finally we conclude the paper

in Section 6.

2 Background

In this section we provide briefly both the methods for constructing a bivariate distri-

bution with a singular component can be constructed. We will be using the following

notation. In this paper it is assumed that all the univariate random variables have

non-negative support, although most of the results are valid for random variables

with support on the whole real line also. It is further assumed that all the univariate

random variables are absolutely continuous and hence they have proper probabil-

ity density functions. For a random variable X with parameter θ, the probability

density function (PDF), the cumulative distribution function (CDF) and survival

function (SF) will be denoted by fX(x; θ), FX(x; θ) and SX(x; θ), respectively. Here

the parameter θ can be vector valued also. A random variable X is said to follow
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an exponential distribution with the parameter λ, if the PDF of X is as follows:

fEX(x;λ) =





λe−λx if x > 0

0 if x ≤ 0.
(2.1)

A random variable X with the PDF (2.1) will be denoted by EX(λ). A random

variable X is said to follow a Weibull distribution with the scale parameter λ and

the shape parameter α, if the PDF of X is as follows:

fWE(x;α, λ) =





αλxα−1e−λx
α

if x > 0

0 if x ≤ 0.
(2.2)

A random variable X with the PDF (2.2) will be denoted by WE(α, λ). In this

paper we will consider another lifetime distribution and it is known as the gen-

eralized exponential (GE) distribution. A two-parameter generalized exponential

distribution is an extension of the one parameter exponential distribution and it

has many properties which are very close to a two-parameter gamma distribution.

Since it has a very convenient PDF and CDF it can be used as an alternative to the

gamma distribution. For a detailed discussion on GE distribution one is referred to

the review article by Nadarajah (2011). A random variable X is said to follow a

generalized exponential (GE) distribution with the scale parameter λ and the shape

parameter α, if the PDF of X is as follows:

fGE(x;α, λ) =





αλe−λx(1− e−λx)α−1 if x > 0

0 if x ≤ 0.
(2.3)

A random variable X with the PDF (2.3) will be denoted by GE(α, λ). Now we are

going to define the MOBE, MOBW and BVGE distributions.

2.1 Minimization Approach

Suppose U1, U2 and U3 are three independent random variables, then a bivariate

random variable (X,Y ) can be constructed as follows:

X = min{U1, U3} and Y = min{U2, U3}.
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Marshall and Olkin (1967) first proposed this method and it is assumed that U1

follows (∼) EX(λ1), U2 ∼ EX(λ2) and U3 ∼ EX(λ3). Hence, the joint survival

function, SMOBE(x, y) = P (X > x, Y > y), of (X,Y ) for x > 0, y > 0, becomes

SMOBE(x, y) = P (U1 > x,U2 > y,U3 > z) =





e−(λ1+λ3)x−λ2y if 0 < y < x <∞
e−λ1x−(λ2+λ3)y if 0 < x < y <∞.

Here z = max{x, y}. From now on, we call this as the Marshall-Olkin bivariate

exponential (MOBE) distribution. The MOBE is not an absolutely continuous

distribution, and in this case P (X = Y ) =
λ3

λ1 + λ2 + λ3
> 0. It does not have a

joint PDF with respect to a two-dimensional Lebesgue measure. It has the following

joint PDF with respect to two-dimensional Lebesgue measure on x 6= y and with

respect to one-dimensional Lebesgue measure on x = y, see for example Bemis, Bain

and Higgins (1972). The joint PDF of the MOBE is as follows:

fMOBE(x, y) =
λ1 + λ2

λ1 + λ2 + λ3
f
(ac)
MOBE(x, y) +

λ3
λ1 + λ2 + λ3

f
(si)
MOBE(x, y),

where

f
(ac)
MOBE(x, y) =





λ1+λ2+λ3
λ1+λ2

fEX(x;λ1 + λ3)fEX(y;λ2) if x ≥ y
λ1+λ2+λ3
λ1+λ2

fEX(x;λ1)fEX(y;λ2 + λ3) if y > x,

and

f
(si)
MOBE(x, y) =





fEX(x;λ1 + λ2 + λ3) if x = y

0 if x 6= y.

It simply means

SMOBE(x, y) =
λ1 + λ2

λ1 + λ2 + λ3

∫ ∞

x

∫ ∞

y
f
(ac)
MOBE(u, v)dudv +

λ3
λ1 + λ2 + λ3

∫ ∞

z
f
(si)
MOBE(u, u)du.

It can be easily seen that facMOBE(x, y) is a proper bivariate PDF. Now MOBW

distribution can be obtained by using Weibull distributions instead of exponential

distributions. The MOBW distribution can be defined as follows. Suppose U1 ∼
WE(α, λ1), U2 ∼ WE(α, λ2), U3 ∼ WE(α, λ3), and they are independently dis-

tributed, then (X,Y ), where

X = min{U1, U3} and Y = min{U2, U3},
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is said to have a MOBW distribution. The joint PDF of MOBW can be obtained

as given below:

fMOBW (x, y) =
λ1 + λ2

λ1 + λ2 + λ3
f
(ac)
MOBW (x, y) +

λ3
λ1 + λ2 + λ3

f
(si)
MOBW (x, y),

where

f
(ac)
MOBW (x, y) =





λ1+λ2+λ3
λ1+λ2

fWE(x;α, λ1 + λ3)fWE(y;α, λ2) if x > y

λ1+λ2+λ3
λ1+λ2

fWE(x;α, λ1)fWE(y;α, λ2 + λ3) if y > x,

and

f
(si)
MOBW (x, y) =





fWE(x;α, λ1 + λ2 + λ3) if x = y

0 if x 6= y.

Several other bivariate distributions, for example Sarhan-Balakrishnan bivariate dis-

tribution by Sarhan and Balakrishnan (2007) or modified Sarhan-Balakrishnan bi-

variate distribution by Kundu and Gupta (2010) have been obtained using the same

procedure. Now we will provide the maximization method.

2.2 Maximization Approach

Suppose U1, U2 and U3 are three independent random variables, then based on

these three random variables, the following bivariate random variable (X,Y ) can be

constructed, where

X = max{U1, U3} and Y = max{U2, U3}.

Kundu and Gupta (2009) first proposed this method to construct BVGE distribu-

tion, and it can be obtained as follows. Suppose U1 ∼ GE(α1, λ), U2 ∼ GE(α2, λ),

U3 ∼ GE(α3, λ), and they are independently distributed. They (X,Y ) as defined

above is said to have a BVGE distribution. The joint CDF of (X,Y ) for x > 0 and

y > 0, is

FBV GE(x, y) = P (U1 ≤ x, U2 ≤ y, U3 ≤ z)

=





(1− e−λx)α1(1− e−λy)α2+α3 if 0 < y < x <∞
(1− e−λx)α1+α3(1− e−λy)α2 if 0 < x ≤ y <∞,
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and the joint PDF becomes:

fBV GE(x, y) =
α1 + α2

α1 + α2 + α3
f
(ac)
BV GEW (x, y) +

α3

α1 + α2 + α3
f
(si)
BV GE(x, y),

where

f
(ac)
BV GE(x, y) =





α1+α2+α3
α1+α2

fGE(x;α1, λ)fWE(y; (α2 + α3), λ) if y < x

α1+α2+α3
α1+α2

fGE(x; (α1 + α3), λ)fWE(y;α2, λ) if x < y,

and

f
(si)
BV GE(x, y) =





fGE(x;α1 + α2 + α3, λ) if x = y

0 if x 6= y.

Several other bivariate distributions with a singular component have been devel-

oped by using this method, for example the bivariate inverse Weibull distribution

by Muhammed (2016), the bivariate generalized linear failure rate distribution pro-

posed by Sarhan et al. (2011) or a very general proportional reversed hazard bi-

variate model as suggested by Kundu and Gupta (2010) etc. In the next section

we propose a very general method of constructing a bivariate distribution with a

singular component using that all these distributions can be obtained as special

cases.

3 Proposed Method

A bivariate random variable (X,Y ) is said to have a bivariate distribution with a

singular component, if the joint PDF of (X,Y ) can be written as

fX,Y (x, y) = pf
(ac)
X,Y (x, y) + (1− p)f (si)X,Y (x, y). (3.1)

Here, 0 < p < 1, f
(ac)
X,Y (x, y) is a proper two dimensional PDF, and f

(si)
X,Y (x, x) is a

proper one dimensional PDF, and f
(si)
X,Y (x, y) = 0, if x 6= y. Now it is very clear

that with proper choice of p, f
(ac)
X,Y (x, y) and f

(si)
X,Y (x, y) it is possible to obtain all

the existing bivariate distributions with a singular component.

Some of the advantages of the proposed class of distributions can be described as

follows. Note that the bivariate Weibull geometric distribution which has been pro-

posed by Kundu and Gupta (2014) cannot be obtained by the above minimization or
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maximization approach, but with the proper choice of p, f
(ac)
X,Y (x, y) and f

(si)
X,Y (x, y),

it is possible to obtain based on the proposed method. It may be mentioned that all

the existing bivariate distributions with a singular component have positive corre-

lation coefficient, and it is due to construction. It is not possible to obtain negative

correlation between the two variables based on the existing methods. But in our

proposed method it is not a restriction. It is possible to obtain correlation on the

entire range. For example, we can construct f
(ac)
X,Y (x, y) based on a Gaussian copula

with any marginal distribution function, and it is possible to obtain the correlation

on the entire range, namely from (-1,1).

The following interpretation can be given for the proposed model. Suppose U ,

V and W are three random variables, and (U, V ) has a joint PDF fU,V (u, v) and W

has the PDF fW (w). We consider the following bivariate random variable (X,Y )

as follows:

(X,Y ) =





(U, V ) with probability p

(W,W ) with probability 1− p,

then for 0 < p < 1 and if fU,V (u, v) = f
(ac)
X,Y (u, v), fW (w) = f

(si)
X,Y (w,w), then (X,Y )

will have the same joint PDF as in (3.1).

In this section we mainly derive some of the general properties of this proposed

bivariate distribution and in the subsequent sections we consider one specific case

and discuss its properties. The joint CDF and the joint SF of (X,Y ) will be denoted

by FX,Y (x, y) and SX,Y (x, y), respectively. The joint CDF and the joint SF corre-

sponding to the joint PDF f
(ac)
X,Y (x, y) will be denoted by F

(ac)
X,Y (x, y) and S

(ac)
X,Y (x, y),

respectively. Similarly, the CDF and SF of the PDF f
(si)
X,Y (x, x) will be denoted by

F
(si)
X,Y (x) and S

(si)
X,Y (x), respectively. Therefore, the joint CDF and the joint SF of

(X,Y ) can be written as

FX,Y (x, y) = pF
(ac)
X,Y (x, y) + (1− p)F (si)

X,Y (min{x, y}) and (3.2)

SX,Y (x, y) = pS
(ac)
X,Y (x, y) + (1− p)S(si)

X,Y (max{x, y}), (3.3)
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respectively. Hence, the CDF of X and Y can be obtained as

P (X ≤ x) = FX(x) = pF
(ac)
X,Y (x,∞) + (1− p)F (si)

X,Y (x, x), and

P (Y ≤ y) = FY (y) = pF
(ac)
X,Y (∞, y) + (1− p)F (si)

X,Y (y, y).

Therefore, it is clear that in general it will be a mixture distribution, but with the

proper choice of p, F
(ac)
X,Y (x, y) and F

(si)
X,Y (x), it may not be a mixture distribution.

Some of the properties can be easily obtained for (X,Y ), such that P (X = Y ) = p,

P (X 6= Y ) = 1− p, and

P (X < Y ) = p

∫ ∞

0

∫ ∞

x
f
(ac)
X,Y (u, v)dvdu

P (X > Y ) = p

∫ ∞

0

∫ x

0
f
(ac)
X,Y (u, v)dvdu.

We can further obtain quite convenoently the distribution of max{X,Y } and

min{X,Y }, i.e.

P (max{X,Y } ≤ x) = pF
(ac)
X,Y (x, x) + (1− p)F (si)

X,Y (x, x) and

P (min{X,Y } ≥ x) = pS
(ac)
X,Y (x, x) + (1− p)S(si)

X,Y (x, x).

This model can be used quite conveniently for modeling data from a dependent

series system, dependent parallel system, analyzing dependent competing risks data

and also dependent complementory risks data. We will explain those in detail in

the subsequent sections.

4 Bivariate Weibull Distribution

4.1 Joint, Marginal and Conditional PDFs

The main aim of this section is to define a bivariate Weibull (BWE) distribution

based on the proposed method, which has a close similarity with the popular MOWE

distribution, but it is more flexible than the MOBW distribution. We discuss dif-

ferent properties of the BWE distribution and provide the estimation method. We

will also explore how this model can be used to analyze dependent competing risks

data.
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Consider the bivariate distribution which has the following absolute continuous

part and the singular part.

f
(ac)
X,Y (x, y) = c





fWE(x;α, δ1)fWE(y;α, δ2) if x < y

fWE(x;α, δ3)fWE(y;α, δ4) if y < x,
(4.1)

where c−1 =
δ1

δ1 + δ2
+

δ4
δ3 + δ4

, and

f
(si)
X,Y (x, y) =





fWE(x;α, δ5) if x = y

0 if x 6= y.
(4.2)

Then the random variable (X,Y ) has the following joint PDF of (X,Y ):

fX,Y (x, y) = pf
(ac)
X,Y (x, y) + (1− p)f (si)X,Y (x, y). (4.3)

We make the following restrictions on the parameter.

δ1 + δ2 = δ3 + δ4 = θ (say) and δ5 = δ1 + δ2 = θ. (4.4)

These restrictions have been made so that the proposed bivariate distribution has a

similar structure as the MOBW distribution and at the same time it is more flexible

than the later. From now on a bivariate distribution with the joint PDF (4.3) and

with the restriction (4.4) will be called BWE distribution. It may be mentioned that

f
(ac)
X,Y (x, y) is continuous for all 0 < x, y < ∞, when δ1 + δ2 = δ3 + δ4 and |δ1 − δ2|

= |δ3− δ4|, similar to the MOBW distribuion, otherwise it is not continuous on the

line x = y. When α = 1, we call it as the bivariate exponential (BEX) distribution.

The corresponding survival function, SX,Y (x, y) for x ≤ y becomes:

SX,Y (x, y) = pc

{
(e−δ1x

α − e−δ1yα)e−δ2y
α

+
δ1 + δ4
θ

e−θy
α

}
+ (1− p)e−θyα (4.5)

and for x > y,

SX,Y (x, y) = pc

{
(e−δ4y

α − e−δ4xα)e−δ3x
α

+
δ1 + δ4
θ

e−θx
α

}
+ (1− p)e−θxα . (4.6)

It can be easily seen that if we take:

δ1 = λ1, δ2 = λ2 + λ3, δ3 = λ1 + λ3, δ4 = λ2, p =
λ1 + λ2

λ1 + λ2 + λ3
,
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it satisfies the constraint (4.4), and SX,Y (x, y) becomes

SX,Y (x, y) =





e−λ1x
α
e−(λ2+λ3)y

α
if x ≤ y

e−(λ1+λ3)x
α
e−λ2y

α
if x > y.

It shows that the proposed BWE distribution becomes the MOBW distribution, and

when α = 1, it reduces to the MOBE distribution.

It may be noted that the proposed BWE distribution is more flexible than the

MOBW distribution, as the former has one extra parameter. Moreover, it is well

known that the estimation of the unknown parameters in case of MOBW distribu-

tion is not a trivial issue, see for example Kundu and Dey (2009), where as it is

observed that in case of BWE distribution, the maximum likelihood estimators can

be obtained in a routine manner. Hence, the proposed BWE distribution can be

used quite effectively for data analysis purposes.

Now we consider the marginal distribution functions of BWE.

SX(x) = P (X > x) = p
δ1 + δ4
θ

e−δ3x
α

+

(
1− pδ1 + δ4

θ

)
e−θx

α

SY (y) = P (Y > y) = p
δ1 + δ4
θ

e−δ2y
α

+

(
1− pδ1 + δ4

θ

)
e−θy

α
.

It is interesting to see that if p
δ1 + δ4
δ1 + δ2

< 1, then the marginal distribution func-

tions can be written as the mixture of two Weibull distribution functions, and if

p
δ1 + δ4
δ1 + δ2

> 1, then it can be written as the generalized mixture of Weibull distribu-

tions, see for example Franco et al. (2014). The PDFs of X and Y can be written

as

fX(x) = p
δ1 + δ4
θ

fWE(x;α, δ3) +

(
1− pδ1 + δ4

θ

)
fWE(x;α, θ)

fY (y) = p
δ1 + δ4
θ

fWE(y;α, δ2) +

(
1− pδ1 + δ4

θ

)
fWE(y;α, θ),

respectively. Since the marginals are mixtures of Weibull distributions the PDFs

can take variety of shapes. It can be increasing, decreasing and even bimodal also.

Moreover, the hazard functions of the marginals also can be of different types. The

PDFs and hazard functions of the marginals for different parameter values have
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been plotted in Figure 1. It may be mentioned that Figures 1(a)-1(c) correspond

to mixture of Weibull distributions where as Figure 1(d) corresonds to generalized

mixture of Weibull distributions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7  8  9  10

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

(d)

Figure 1: The PDF plot of the marginal distribution of X, when (a) α = 1.0, δ1 =

2.0, δ2 = 1.0, δ3 = 1.0, δ4 = 2.0, p = 0.75, (b) α = 2.0, δ1 = 2.0, δ2 = 1.0, δ3 = 1.0,

δ4 = 2.0, p = 0.75, (c) α = 2, δ1 = 3.0, δ2 = 3.0, δ3 = 0.1, δ4 = 5.9, p = 0.6, (d) α

= 2, δ1 = 3.0, δ2 = 3.0, δ3 = 0.1, δ4 = 5.9, p = 0.85.

In Figure 2 we provide the hazard functions of the marginal distribution X for

different parameter values. It is clear that it can take variety of shapes. In this

case also Figures 2(a) - 2(c) corresond to the mixture of Weibull distributions, and

Figure 2(d) corresonds to the generalized mixture of Weibull distributions.

Now we discuss some conditional distributions which will be of interest in data

analysis, and it may have some independent interests also. For example, if (X,Y )
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Figure 2: The hazard function plot of the marginal distribution of X, when (a) α

= 1.0, δ1 = 2.0, δ2 = 1.0, δ3 = 1.0, δ4 = 2.0, p = 0.75, (b) α = 2.0, δ1 = 2.0, δ2 =

1.0, δ3 = 1.0, δ4 = 2.0, p = 0.75, (c) α = 2, δ1 = 3.0, δ2 = 3.0, δ3 = 0.1, δ4 = 5.9, p

= 0.6, (d) α = 2, δ1 = 3.0, δ2 = 3.0, δ3 = 0.1, δ4 = 5.9, p = 0.85.

has a BWE as described in (4.3) then it can be easily seen that

X|{X < Y } ∼WE(α, θ) and Y |{Y < X} ∼WE(α, θ). (4.7)

Moreover, the conditional PDF of Y |{X < Y } and X|{Y < X} can be written as

fY |{X<Y }(y) =
θ

δ1
αδ2y

α−1e−δ2y
α
(1− e−δ1yα) (4.8)

fX|{Y <X}(y) =
θ

δ4
αδ3y

α−1e−δ3y
α
(1− e−δ4yα). (4.9)

It can be seen that (4.8) and (4.9) are the PDFs of the weighted Weibull (WWE)

distribution, as introduced by Gupta and Kundu (2009), see also Shahbaz, Shahbaz

and Butt (2010) in this respect. It may be mentioned that the WWE distribution has
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an interesting interpretation similar to the skew normal distribution as introduced

by the Azzalini (1985). For several interesting properties on WWE distribution, one

may refer to Al-Mutairi, Ghitany and Kundu (2018).

4.2 Absolute Continuous Part of a BWE and its Generation

In this section we study some basic feature of the absolute continuous part of the

proosed BWE distribution. Suppose (X,Y ) has a BWE distribution with the abso-

lute continuous part as given in (4.1). Let us assume that an absolute continuous

bivariate random variable (U, V ) has the joint PDF

fU,V (u, v) =
θ

δ1 + δ4





fWE(u;α, δ1)fWE(v;α, δ2) if u < v

fWE(u;α, δ3)fWE(v;α, δ4) if v < u.
(4.10)

It may be mentioned that the joint PDF of (U, V ) may be compared with the joint

PDF of the Block and Basu bivariate Weibull (BBBW) distribution. The BBBW

distribution can be obtanied from a MOBW distribution by removing the singular

component, see for example the original article by Block and Basu (1974), see also

Pradhan and Kundu (2016) in this respect. It may be recalled that joint PDF of a

BBBW distribution with parameters α, λ0, λ1, λ2, can be written as follows:

fBBBW (u, v) =
λ0 + λ1 + λ2
λ1 + λ2





fWE(u;α, λ1)fWE(v;α, λ0 + λ2) if u < v

fWE(v;α, λ0 + λ1)fWE(v;α, λ2) if v < u.

(4.11)

It is clear that the joint PDF (4.11) can be obtained as a special case of (4.10). Now

we provide the shape of the joint PDF of (4.10). It may be noted that if α ≤ 1,

then the joint PDF of (U, V ) is a decreasing function both in u and v directions for

all values of δ1, δ2, δ3 and δ4. Therefore, we are mainly interested when α > 1 and

then we have the following result.

Theorem 1: For α > 1, if (a) δ2 < δ1 and δ4 > δ3, then it is a bimodal function and

the two modes are at (i)

([
α− 1

αδ1

]1/α
,

[
α− 1

αδ2

]1/α)
and (ii)

([
α− 1

αδ3

]1/α
,

[
α− 1

αδ4

]1/α)
,

(b) δ1 < δ2, δ4 < δ3, then it is unimodal, and the mode is at

([
2(α− 1)

α(δ1 + δ2)

]1/α
,

[
2(α− 1)

α(δ1 + δ2)

]1/α)
,
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(c) δ1 < δ2, δ4 > δ3 and δ1δ2 > δ3δ4, then it is a bimodal function, and and the two

modes are at (i)

([
2(α− 1)

α(δ1 + δ2)

]1/α
,

[
2(α− 1)

α(δ1 + δ2)

]1/α)
and (ii)

([
α− 1

αδ3

]1/α
,

[
α− 1

αδ4

]1/α)
,

(d) δ1 < δ2, δ4 > δ3 and δ1δ2 < δ3δ4, then it is unimodal and the mode is at([
α− 1

αδ3

]1/α
,

[
α− 1

αδ4

]1/α)
.

Proof: The proof is not very difficult to obtain. It can be obtained by studying

the derivatives of the log of the joint PDF of the BWE distribution. The details are

avoided.

The following Figure 3 provides the contour plots of the absolute continuous

part of the BWE distribution for different parameter values.
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Figure 3: The contour plot of the joint PDF of the absolute continuous part of the

BWE distribution when (a)α = 2, δ1 = 1.0, δ2 = 2.0, δ3 = 2.0, δ4 = 1.0, (b) α = 2,

δ1 = 1.0, δ2 = 2.0, δ3 = 1.0, δ4 = 2.0, (c) α = 2, δ1 = 2.0, δ2 = 1.0, δ3 = 1.0, δ4 =

2.0, (d) α = 2, δ1 = 2.0, δ2 = 3.0, δ3 = 1.0, δ4 = 4.0.
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It can be easily checked that if (U, V ) has the joint PDF (4.10), then P (U <

V ) =
δ1

δ1 + δ4
and P (U > V ) =

δ4
δ1 + δ4

. The following decomposition is useful to

generate samples from (U, V ), they may have some independent interests also. The

joint PDF of (U, V ) can be written as follows:

fU,V (u, v) =
δ1

δ1 + δ4
fU1,V1(u, v) +

δ4
δ1 + δ4

fU2,V2(u, v). (4.12)

Here

fU1,V1(u, v) =





δ1+δ2
δ1

fWE(u;α, δ1)fWE(v;α, δ2) if u < v

0 if u ≥ v
(4.13)

and

fU2,V2(u, v) =





δ3+δ4
δ4

fWE(u;α, δ3)fWE(v;α, δ4) if u > v

0 if u ≤ v.
(4.14)

It follows that if (U1, V1) has a joint PDF (4.13), then U1 ∼ WE(α, δ1 + δ2) and

P (V1 > v|U1 = u) = e−δ2(v
α−uα), for v > u. Similarly, if (U2, V2) has a joint PDF

(4.14), then V2 ∼WE(α, δ3 + δ4) and P (U2 > u|V2 = v) = e−δ3(u
α−vα), for u > v. It

is quite simple to generate random samples from (U1, V1) and (U2, V2), and hence,

generation random samples from (U, V ) is straight forward.

Note that if (X,Y ) has BWE distribution, then it can be written as follows:

(X,Y ) =





(U1, V1) with probability pδ1
δ1+δ4

(U2, V2) with probability pδ4
δ1+δ4

(W,W ) with probability 1− p,
(4.15)

here (U1, V1) and (U2, V2) are same as defined above, and W ∼ WE(α, δ1 + δ2).

The above decomposition (4.15) can be used quite effectively to generate random

samples from a BWE distribution.

We have provided the scatter plots of (X,Y ) generated from BWE distribution

for different parameter values in Figure 4. In each case we have reported the corre-

sponding sampling correlation (r) also based 100 data points. It may be observed

that the sample correlation coefficient can be negative also in this case for certain

set of parameters.
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Figure 4: The scatter of (X,Y ) generated from BWE distribution when (a) α =

1.0, δ1 = 10.0, δ2 = 1.0, δ3 = 1.0, δ4 = 10.0, p = 0.75, r = -0.32 (b) α = 2.0, δ1

= 1.0, δ2 = 10.0, δ3 = 10.0, δ4 = 1.0, p = 0.75, r = 0.71 (c) α = 2, δ1 = 1.0, δ2 =

10.0, δ3 = 5.0, δ4 = 6.0, p = 0.75, r = -0.28 (d) α = 0.5, δ1 = 8.0, δ2 = 3.0, δ3 =

5.0, δ4 = 6.0, p = 0.5, r = 0.009.

4.3 Maximum Likelihood Estimators

In this section we disucss about the maximum likelihood estimators of the unknown

parameters. It is assumed we have a random sample of size n from a BWE distri-

bution with the constraint on the parameters (4.4). Therefore, the proposed BWE

distribution has five independent parameters. Let D = {(x1, y1), . . . , (xn, yn)} be a

random sample of size n from a BWE distribution, and we use the following notation

I1 = {i : xi < yi}, I2 = {i : xi > yi} I0 = {i : xi = yi = ui}.
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and |I1| = n1, |I2| = n2, |I0| = n0. Moreover, we use θ = δ1 + δ2 = δ3 + δ4, as

before. Therefore, it is assumed that p, α, θ, δ2, δ3 are the independent parameters

of the proposed model, and Θ = (p, α,Γ)>, where Γ = (θ, δ2, δ3)
>. Now based on

the observed sample D, the log-likelihood function can be written as

l(p, α,Γ|D) = (n1 + n2) {ln p− ln(2θ − δ2 − δ3) + ln θ}+ 2n1 lnα+ n1 ln δ2 +

n1 ln(θ − δ2) + (α− 1)
∑

i∈I1∪I2
lnxi − (θ − δ2)

∑

i∈I1
xαi +

(α− 1)
∑

i∈I1∪I2
ln yi − δ2

∑

i∈I1
yαi + 2n2 lnα+ n2 ln δ3 + n2 ln(θ − δ3)−

δ3
∑

i∈I2
xαi − (θ − δ3)

∑

i∈I2
yαi + n0 ln(1− p) + n0 lnα+ n0 ln θ +

(α− 1)
∑

i∈I0
lnui − θ

∑

i∈I0
uαi . (4.16)

The maximum likelihood estimators (MLEs) of p, α,Γ can be obtained by maximiz-

ing l(p, α,Γ|D) with respect to the unknown parameters. It can be easily seen that

the MLE of p becomes

p̂ =
n1 + n2

n
,

and the MLEs of (α,Γ)> can be obtained by maximizing

l0(α,Γ) = (n1 + n2) {− ln(2θ − δ2 − δ3) + ln θ}+ 2n1 lnα+ n1 ln δ2 + n1 ln(θ − δ2) +

α
∑

i∈I1∪I2
lnxi − (θ − δ2)

∑

i∈I1
xαi + α

∑

i∈I1∪I2
ln yi − δ2

∑

i∈I1
yαi +

2n2 lnα+ n2 ln δ3 + n2 ln(θ − δ3)− δ3
∑

i∈I2
xαi − (θ − δ3)

∑

i∈I2
yαi +

n0 lnα+ n0 ln θ + α
∑

i∈I0
lnui − θ

∑

i∈I0
uαi , (4.17)

with respect to the unknown parameters. It is a four dimensional optimization

problem. If we try to solve directly, then we can obtain the normal equations and

we need to solve four non-linear equations simultaneously. To avoid that we have

used the profile likelihood method, and the method provided by Song, Fan and

Kalbfleisch (2005). It is observed that the the MLEs of the unknown parameters

can be obtained by solving only one non-linear equation. The details are provided
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in Appendix A. Once we obtain the MLEs of the unknown parameters, the observed

Fisher information matrix can be easily constructed, and the asymptotic confidence

intervals of the unknown parameters also can be computed.

It may be noted that the algorithm which has been described in the previous

section, is an iterative process, hence good initial estimates are needed for α, θ, δ2

and δ3. Now we describe how to obtain the initial guesses.

Now to compute α and θ, we use the results (4.7). The data points which are

obtained as below

{xi : i ∈ I0 ∪ I1}, and {yi : i ∈ I2},

are i.i.d. WE(α, θ) random variables. Hence, the estimates of α and θ can be

obtained quite conveniently as several efficient methods are available to estimate the

shape and scale parameters of a Weibull distribution. Further, the initial estimates

of δ1 and δ4 can be obtained from

{xi : i ∈ I2} and {yi : i ∈ I1},

and using the results (4.8) and (4.9). Note that {xi : i ∈ I2} and {yi : i ∈ I1},
are WWE distributions. Hence, assuming the shape parameter α to be known, the

method proposed by Gupta and Kundu (2009) can be used quite conveniently to

estimate δ1 and δ4.

5 Data Analysis

In this section we perform the analyses of two data sets, one simulated and one real

data set.

5.1 Simulated Data Set:

We have generated a data set with n = 50, and p = 0.75, α = 1.5, δ1 = δ2 = δ3 = δ4

= 1.0. The data set has been plotted in Figure 5 In this case the intitial estimates

of α, θ, δ1 and δ4 can be obtained as

α̃ = 1.142, θ̃ = 1.842, δ̃1 = 0.597, δ̃4 = 0.911.
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Figure 5: The scatter of (X,Y ) for simulated sample.

We have used the above initial estimates to compute the MLEs of the unknown

parameters. We have reported the MLEs and the associated 95% confidence intervals

(in brackets) based on the observed Fisher information matrix.

α̂ = 1.368(∓0.352), θ̂ = 1.833(∓0.451), δ̂1 = 0.864(0.235), δ̂2 = 0.969(∓0.268),

δ̂3 = 0.877(∓0.235), δ̂4 = 0.956(0.254), p̂ = 0.88(0.17).

5.2 Soccer Data

In this section we have analyzed on soccer data set based on the proposed BWE

model. The data set has been obtained from Meintanis (2007) and it represents the

soccer data where at least one goal has been scored by the home team and at least

one goal has been scored directly either from a penalty kick, foul kick or any other

direct kick. All of them together we call tham as the kick goal. Here X reresents

the time in minutes of the first kick goal by any team and Y represents the time in

minutes of the first goal of any type scored by the home team. It may be noted that

in this case all possibilities are open, namely X < Y , X > Y or X = Y . The data

set has been presented in Table 1.

Before procedding further, we have divided all the data points by 100 mainly
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Table 1: UEFA Champion’s League data

2005-2006 X Y 2004-2005 X Y

Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34

Milan-Fenerbahce 63 18 Real Madrid-Roma 53 39

Chelsea-Anderlecht 19 19 Man. United-Fenerbahce 54 7

Club Brugge-Juventus 66 85 Bayern-Ajax 51 28

Fenerbahce-PSV 40 40 Moscow-PSG 76 64

Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15

Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48

Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16

Man. United-Benfica 39 39 Dynamo Kyiv-Real Madrid 44 13

Real Madrid-Rosenborg 82 48 Man. United-Sparta 25 14

Villarreal-Benfica 72 72 Bayern-M. TelAviv 55 11

Juventus-Bayern 66 62 Bremen-Internazionale 49 49

Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24

Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30

Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3

Schalke-PSV 18 18 Liverpool-Olympiacos 27 47

Barcelona-Bremen 22 14 M. Tel-Aviv-Juventus 28 28

Milan-Schalke 42 42 Bremen-Panathinaikos 2 2

Rapid-Juventus 36 52
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for numerical purposes. It is not going to make any difference in the inference

procedure. It is observed that in this case N1 = 6, N2 = 17 and N0 = 14. We

obtain the initial estimates of α, θ, δ1 and δ4 as

α̃ = 1.477, θ̃ = 5.341, δ̃1 = 4.199, δ̃4 = 4.699.

Based on these initial estimates we compute the MLEs of the unknown parameters.

The MLEs and the associated 95% confidence intervals (in brackets) based on the

observed Fisher information matrix are reported below.

α̂ = 1.649(∓0.473), θ̂ = 5.981(∓1.114), δ̂1 = 0.483(0.097), δ̂2 = 5.499(∓1.654),

δ̂3 = 4.653(∓0.998), δ̂4 = 1.323(0.189), p̂ = 0.622(0.201).

6 Conclusions

In this paper we have proposed a general construncation of a bivariate distribution

with a singular component. It is well known that most of the existing methods which

can be used to generate a bivariate distribution with a singular component can be

classifed into two classes, namely the minimization approach proposed by Marshall

and Olkin (1967) and the maximization approach proposed by Kundu and Gupta

(2009). The present method actually unifies both the approaches. All the existing

bivariate distributions with a singular component can be obtained as special cases

of the proposed model. We have considered one specific model based on the Weibull

distributions and discussed some of its properties, and showed how it can be used

in practice. It may be mentioned that this model can be used quite effectively as a

dependent competing risks model and it can be extended to the multivariate case

also. More work is needed along that direction.

Acknowledgements: The author would like to thank the reviewers for their

helpful comments which have helped to imporve the manuscript.
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Appendix A

In this section we show how we can maximize l0(α,Γ) with respect to the unknown

parameters. This is a four dimensional optimization problem. To avoid that we

use the profile likelihood method. In that case for a fixed α first we maximize with

respect to Γ and then we maximize with respect to α. Now maximizing l0(α,Γ)

with respect to Γ for a fixed α is a three dimensional optimization problem, and

we use the method of Song, Fan, and Kalbfleisch (2005) to optimize it. It can be

described as follows. Let us write

l0(α,Γ) = l1(Γ) + l2(Γ) + l3(α),

here

l3(α) = lnα(2n1 + 2n2 + n0) + α


 ∑

i∈I1∪I2
lnxi +

∑

i∈I1∪I2
ln yi +

∑

i∈I0
lnui


 ,

l1α(Γ) = n ln θ − θ


∑

i∈I1
xαi +

∑

i∈I2
yαi +

∑

i∈I0
uαi


+ n1 ln δ2 − δ2

∑

i∈I1
(yαi − xαi )

+n2 ln δ3 − δ3
∑

i∈I2
(xαi − yαi )

l2α(Γ) = −(n1 + n2) ln(2θ − δ2 − δ3) + n1 ln(θ − δ2) + n2 ln(θ − δ3).

Therefore, for a given α, if Γ̂α maximizes l1(Γ) + l2(Γ), then the MLE of α, say α̂

can be obtained by the argument maximum of l0(α, Γ̂α), and the MLE of Γ, say Γ̂

can be obtained as Γ̂ = Γ̂α̂

For a given α, we want to maximize l1α(Γ)+ l2α(Γ), with respect to Γ. It means

we need to find the solution of the vector equation:

l̇1α(Γ) + l̇2α(Γ) = 0,

equivalently

l̇1α(Γ) = −l̇2α(Γ),

here 0 = (0, 0, 0)>,

l̇1α(Γ) =

(
∂

∂θ
l1α(Γ),

∂

∂δ2
l1α(Γ),

∂

∂δ3
l1α(Γ)

)>
, l̇2α(Γ) =

(
∂

∂θ
l2α(Γ),

∂

∂δ2
l2α(Γ),

∂

∂δ3
l2α(Γ)

)>
.
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Song, Fan, and Kalbfleisch (2005) suggested the following, first solve

l̇1α(Γ) = 0, (6.1)

if Γ(0) is the solution of (6.1), then find Γ(1) such that

l̇1α(Γ) = −l̇2α(Γ(0)).

Continue the process, until the convergence takes place. We will provide the explicit

expressions of If Γ(j) = (θ(j), δ
(j)
2 , δ

(j)
3 )>, the value of Γ(j) at the j-th iteration. Let

us use the following notations:

A(α) =
∑

i∈I1
xαi +

∑

i∈I2
yαi +

∑

i∈I0
uαi , B(α) =

∑

i∈I1
(yαi − xαi ), C(α) =

∑

i∈I2
(xαi − yαi ),

a0 = b0 = c0 = 0, and for j = 1, 2, . . .,

aj =
n1 + n2

2θ(j) − δ(j)2 − δ
(j)
3

− n1

θ(j) − δ(j)2

− n2

θ(j) − δ(j)3

bj = − n1 + n2

2θ(j) − δ(j)2 − δ
(j)
3

+
n1

θ(j) − δ(j)2

cj = − n1 + n2

2θ(j) − δ(j)2 − δ
(j)
3

+
n2

θ(j) − δ(j)3

.

Then

θ(j+1) =
n

A(α) + aj
, δ

(j+1)
2 =

n1
B(α) + bj

, δ
(j+1)
3 =

n2
C(α) + cj

.
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ABSTRACT

A new generalized family called Generalized Lehmann Alternative Type II

(GLA2) family is introduced and studied in this paper. Special cases of this

family using Uniform and Kumaraswamy distributions as base are developed

and their statistical properties studied. Generalized Lehmann Alternative Type

II Exponential (GLA2E) distribution is also developed and its statistical prop-

erties are obtained along with application. The new distribution is applied to

a real data set to show the effectiveness of the distribution and it is verified

that the new model is a better model than the existing exponential model and

Marshall-Olkin extended exponential model. A detailed study on the record

value theory associated with GLA2E distribution is conducted. Using the mean,

variance and covariance of upper record values of the extended model, BLUE’s

of location and scale parameters are obtained and future records are predicted

which has a number of practical uses. The 95% confidence interval for location

and scale parameters are also computed. The result is applied to a real data set

to validate the results. Entropy of record values is derived. This result will be
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useful in characterization of record values based on entropies and a quantifica-

tion of information contained in each additional record value based on entropy

measure.

Key words and Phrases: Lehmann Alternative , Entropy, Hazard rate function,

Kumaraswamy distribution, Marshall-Olkin distribution, Record value.

1 Introduction

The properties and estimation methods for parameters of the exponentiated family

of distributions have been studied by many authors, see Gupta and Kundu (2001a,

2001b, 2007), Pal et al. (2006), Nadarajah and Kotz (2006a) and Nadarajah et

al. (2013). Tahir and Nadarajah (2015) discussed about Lehmann alternative type

family of distributions. In the literature there exist two types of Lehmann alternative

type family of distributions for obtaining the exponentiated family of distributions.

1.1 Lehmann Alternative 1 (LA1)

If F(x) is the cdf of the baseline distribution, then LA1 family of distributions is

obtained by taking the βth - power of F(x) so that

G(x) = (F (x))β, (1)

where β > 0 is a positive real parameter.The probability density function (pdf)

corresponding to (1) is

g(x) = βf(x)(F (x))β−1, (2)

where f(x) = d
dxF (x) denotes the pdf of F. For any lifetime random variable t,

the survival (reliability) function (sf), G(t), the hazard (failure) rate function (hrf),

h(t), the reversed hazard rate function (rhrf), r(t), and the cumulative hazard rate

function (chrf), H(t), associated with (1) and (2) are G(t) = 1 − [F (t)]β, h(t) =

βf(t)[F (t)]β−1[1− [F (t)]β]−1, r(t) = βf(t)[F (t)]−1 and H(t) = − log[1− [F (t)]β].
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1.2 Lehmann Alternative 2 (LA2)

If F(x) is the cdf and F (x) = 1 − F (x) is the sf of the baseline distribution, then

the survival function of LA2 family of distributions is obtained by taking the βth -

power of F (x) so that

G(x) = [F (x)]β, (3)

where β is a positive real parameter. The LA2 cdf may also be written as

G(x) = 1− [1− F (x)]β. (4)

The pdf corresponding to (4) is

g(x) = βf(x)[1− F (x)]β−1 (5)

For any lifetime random variable t, the sf, hrf, rhrf and chrf associated with (3) and

(4) are G(t) = [1− F (t)]β, h(t) = βf(t)[1− F (t)]−1, r(t) = βf(t)[1− F (t)]β−1{1−
[1− F (t)]β}−1 and H(t) = −β log[1− F (t)].

Nadarajah and Kotz (2006 a), Nadarajah (2006) and Rao et al. (2013) used the

LA2 approach for introducing exponentiated Fréchet, exponentiated Gumbel and

exponentiated log-logistic distributions. For more applications see Abd-Elfattah

and Omima (2009), Abd-Elfattah et al. (2010), Rao et al. (2012, 2013), and Al-

Nasser and Al-Omari (2013).

1.3 Marshall - Olkin Family of Distributions

Let X be a rv with a distribution function F (x) and survival function F (x). By

adding a new parameter, say δ, Marshall and Olkin (1997) introduced a new family

of distributions namely Marshall - Olkin family of distributions with distribution

function G(x) given by

G(x) =
F (x)

δ + (1− δ)F (x)
, x ∈ R and δ > 0. (6)

The corresponding survival function is

Ḡ(x) =
δF (x)

1− (1− δ)F (x)
, x ∈ R and δ > 0. (7)
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If δ = 1, then G=F. If F has a density and hazard rate function, rF , then by using

the survival function G, the density of G is given by

g(x; δ) =
δf(x)

(1− (1− δ)F (x))2
, x ∈ R and δ > 0 (8)

and hazard rate function is

h(x; δ) =
rF (x)

1− (1− δ)F (x)
, x ∈ R and δ > 0.

Recently, many authors have developed various Marshall - Olkin distributions with

respect to Gamma, Pareto, Weibull, Burr, Gumbel, Fréchet, Rayleigh, Kumaraswamy,

Linear Exponential, Lomax and other distributions. For details, see Jose and Alice

(2003, 2004 a, 2004 b), Ghitany et.al (2005, 2007), Jayakumar and Mathew (2008),

Jose et.al (2010, 2011), Jose and Rani (2013), Krishna et al. ( 2013 a, 2013 b), Jose

and Remya (2015).

2 Generalized Lehmann Alternative Type II Family of

Distributions

Let X be a random variable with cumulative distribution function (cdf) F(x). The

survival function (sf) and probability density function (pdf) of X are denoted by

F̄ (x) = 1− F (x) and f(x) respectively. By Lehmann Alternative Type II exponen-

tiated family discussed in section (1.2), we can take the cdf as

T (x) = 1− (F̄ (x))β. (9)

The sf is

T̄ (x) = (F̄ (x))β. (10)

The corresponding pdf is

t(x) = βf(x)(F̄ (x))β−1. (11)

Marshall and Olkin (1997) introduced a new method of adding a parameter to a

family of distributions to develop the Marshall-Olkin family which is discussed in
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section (1.3) and cumulative distribution function is given in (6).

Applying (9) in (6), we get the new family of distributions called Generalized

Lehmann Alternative Type II family with parameters (δ, β) with cdf

G(x) =
T (x)

1− δT (x)
.

On simplification, we get

G(x) =
1− (F (x))β

1− δ(F (x))β
. (12)

The sf is

G(x) = 1− 1− (F (x))β

1− δ(F (x))β
.

On simplification, we get

G(x) =
δ(F̄ (x))β

[1− δ̄(F̄ (x))β]
. (13)

The corresponding pdf is

g(x) =
δβf(x)(F̄ (x))β−1

[1− δ̄(F̄ (x))β]2
. (14)

The new family is referred to as GLA2 (δ, β).

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βf(x)

F̄ (x)[1− δ̄(F̄ (x))β]
. (15)

2.1 Maximum Likelihood Estimation

Let X1, X2, ...Xn be a random sample of size n from GLA2 family, then the likeli-

hood function is

L = (δβ)n

n∏

i=1

f(xi
[
F (xi)

]β−1
)

n∏

i=1

[
1− δ

[
F (xi)

]β]2
.
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The log likelihood function is given by

logL = n log(δβ) +

n∑

i=1

log f(xi) + (β − 1)

n∑

i=1

logF (xi)− 2

n∑

i=1

log
[
1− δ(F (xi))

β
]
.

The partial derivatives of the log likelihood with respect to δ and β are obtained as

∂ logL

∂δ
=
n

δ
− 2

n∑

i=1

(F (xi))
β

[
1− δ̄(F (xi))β

]

and

∂ logL

∂β
=
n

β
+

n∑

i=1

logF (xi) + 2

n∑

i=1

δ(F (xi))
β logF (xi)[

1− δ(F (xi))β
] .

In order to estimate the parameters, we have to solve the normal equations

∂ logL

∂δ
= 0;

∂ logL

∂β
= 0. (16)

Since (16) cannot be solved analytically, numerical iteration technique is used

to get a solution for the parameters δ and β. One may use the nlm package in R

software to get the maximum likelihood estimator (MLE) for the parameters.

3 Some Special Generalized Lehmann Alternative Type

II Models

In this section, we obtain some special GLA2 models using Uniform distribution

and Kumaraswamy distribution. Also we derive their probability density function

(pdf), cumulative density function (cdf) and quantile and the different shapes of

density function and hazard rate function.

3.1 Generalized Lehmann Alternative Type II Uniform distribu-

tion

Let X follows Uniform distribution with parameter θ with pdf, cdf and survival

function g(x) = 1
θ , G(x) = x

θ and Ḡ(x) = 1 − x
θ respectively. If we apply the cdf,
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survival function and pdf of Uniform distribution in the cdf, survival function and

pdf of GLA2 family given in (12), (13) and (14), we get the cdf, survival function

and pdf of the new distribution called Generalized Lehmann Alternative Type II

Uniform distribution with parameters δ, β, θ and is denoted by GLA2U.

The cdf is

G(x) =
1− (1− x

θ )β

1− δ(1− x
θ )β

x, δ, β, θ > 0.

On simplification, we get

G(x) =
θβ − (θ − x)β

θβ − δ(θ − x)β
x, δ, β, θ > 0. (17)

The corresponding sf G(x) = 1−G(x) is

G(x) =
δ(θ − x)β

θβ − δ(θ − x)β
x, δ, β, θ > 0. (18)

The corresponding pdf is

g(x) =
δβθβ(θ − x)β−1

[θβ − δ(θ − x)β]2
x, δ, β, θ > 0. (19)

The density plot for different values of the parameters are given in Fig 1

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βθβ

(θ − x)[θβ − δ(θ − x)β]
x, δ, β, θ > 0.

The graph of h(x) is given in Fig 2. It gives J- shaped and bath tub shaped

curves.

The uth quantile of GLA2U distribution can be obtained by inverting G(x) = u

and is given by

xu = θ

{
1−

[
(u− 1)

uδ + 1

] 1
β

}
, (20)

where 0 < u < 1.
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Figure 1: Probability density function of GLA2U for various values of δ, β and θ

3.2 Generalized Lehmann Alternative Type II Kumaraswamy Dis-

tribution

Let X follows Kumaraswamy distribution with parameters α and γ with cdf, sur-

vival function and pdf F (x) = 1 − (1 − xα)γ , F̄ (x) = (1 − xα)γ and f(x) =

αγx(α−1)(1 − xα)(γ−1) respectively. If we apply the cdf, survival function and pdf

of Kumaraswamy distribution in the cdf, survival function and pdf of Generalized

Lehmann Alternative Type II family given in (12), (13) and (14), we get the cdf,

survival function and pdf of the new distribution called Generalized Lehmann Alter-

native Type II Kumaraswamy distribution with parameters δ, β, α and γ is denoted

by GLA2Kw.

The cdf is

G(x) =
1− (1− xα)βγ

1− δ(1− xα)βγ
x, δ, β, α, γ > 0. (21)
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Figure 2: Hazard rate function of GLA2U for various values of δ, β and θ

The corresponding sf Ḡ(x) = 1−G(x) is

Ḡ(x) =
δ(1− xα)βγ

1− δ(1− xα)βγ
x, δ, β, α, γ > 0. (22)

The corresponding pdf is

g(x) =
δβαγx(α−1)(1− xα)(γ−1)(1− xα)γ(β−1)

[1− δ(1− xα)βγ ]2
x, δ, β, α, γ > 0. (23)

The density plot for different values of the parameters are given in Figure 3.

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βαγx(α−1)(1− xα)(γ−1)

(1− xα)γ [1− δ(1− xα)βγ ]
x, δ, β, α, γ > 0. (24)

The plot of h(x) for different values of the parameters are given in Figure 4. It

shows increasing and bath tub shaped curves.
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Figure 3: Probability density function of GLA2Kw for various values of δ, β, α and

γ



Lehmann Alternative Type II Family of Distributions 39

Figure 4: Hazard rate function of GLA2Kw for various values of δ, β, α and γ

The uth quantile of GLA2Kw distribution can be obtained by inverting G(x) = u

and is given by

xu =

{
1−

[
1− u

1− u+ uδ

] 1
βγ

} 1
α

(25)

where 0 < u < 1.

3.3 Generalized Lehmann Alternative Type II Exponential Distri-

bution

Exponential distribution plays a central role in analysis of lifetime or survival data, in

part of their convenient statistical theory, their important lack of memory property

and their constant hazard rates. In circumstances where the one-parameter family

of exponential distributions is not sufficiently broad, a number of wider families such

as the gamma, Weibull and Gompertz-Makeham distributions are in common use.

Let F (x) = e−λx, x ≥ 0 is the survival function of exponential distribution, by
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(9) we get the new distribution called Generalized Lehmann Alternative Type II

Exponential (GLA2E) distribution with parameters (δ, β, λ) with cdf

G(x) =
eβλx − 1

eβλx − δ
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (26)

The survival function

Ḡ(x) =
δ

eβλx − δ
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (27)

Then the pdf is

g(x) =
δβλeβλx

[eβλx − δ]2
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (28)

The graph of g(x) is given in Fig 5.

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0

g(x)

δ=5,β=1.5,λ=1

δ=3.5,β=1.5,λ=1

δ=0.5,β=1.5,λ=1

δ=1,β=1,λ=1.5

Figure 5: Probability density function of GLA2E (δ, β, λ) for various values of δ, β

and λ

The hazard rate is

h(x) =
βλeβλx

eβλx − δ
x ≥ 0, λ, β and δ > 0. (29)
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The graph of h(x) is given in Fig 6. It can be seen that the hazard rate is DFR

for δ < 1, and IFR for δ > 1. Note that for δ = 1, h(x)=1, showing constant failure

rate. This establishes the wide applicability of the GLA2E distribution in reliability

modeling.

0 1 2 3 4
x

1.0

1.2

1.4

1.6

1.8

g(x)

δ=2.5,β=1.5,λ=1

δ=2,β=1.5,λ=1

δ=0.5,β=1.5,λ=1

δ=1,β=1,λ=1.5

Figure 6: Hazard rate function of GLA2E (δ, β, λ) for various values of δ, β and λ

The uth quantile is obtained by inverting the cdf given in (26).

xu =
1

βλ
log

[
uδ − 1

u− 1

]
, (30)

where U follows U(0,1).
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3.3.1 Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample of size n from GLA2E(δ, β, λ) distribution

with pdf (28). The likelihood function is given by

L(δ, β, λ) =
(δβλ)nenβλx̄

n∏

i=1

(eβλxi − (1− δ))2

.

The log likelihood function is

logL = nlog(δβλ) +

n∑

i=1

βλxi − 2

n∑

i=1

log[eβλxi − δ].

The MLE’s of δ, β and λ are given by the solution of the three equations:

n

δ
− 2

n∑

i=1

1

eβλxi − δ
= 0, (31)

n

λ
+ nβx− 2

n∑

i=1

βxie
βλxi

eβλxi − δ
= 0 (32)

and
n

β
+ nλx− 2

n∑

i=1

λxie
βλxi

eβλxi − δ
= 0. (33)

When δ = 1, the model reduces to exponential distribution. Then we get, λ̂ = 1
x

Here we show that the Generalized Lehmann Alternative Type II model of Ex-

ponential distribution can be a better model than the one parameter exponential

model and Marshall- Olkin Extended Exponential model when it is fitted for the

following data. The data represents the failure times of the air conditioning system

of an airplane reported in Linhart and Zucchini (1986) and is given in Table 1.

Using R program we estimate the parameters and obtain log likelihood, K-S

statistic and p-value. The results are given in Table 2. From the table we can

observe that the p-value is greater for GLA2E distribution than that of Exponen-

tial distribution and Marshall-Olkin Extended Exponential distribution. So we can
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Table 1: Failure times of the air conditioning system of an airplane

23 261 87 7 120 14 62 47 225 71

246 21 42 20 5 12 120 11 3 14

71 11 14 11 16 90 1 16 52 95

Table 2: Summary statistics for the failure time data of the air conditioning system

of an airplane.

Model Parameter MLE -log L K-S statistic p-value

Exponential λ 0.0168 152.6297 0.213 0.132

MOEE δ 0.4072 151.425 0.129 0.6978

λ 0.0106

GLA2E δ 0.3803

λ 0.0039 151.42 0.123 0.7508

β 2.6135

conclude that GLA2E distribution is a better model than Exponential distribution

and Marshall-Olkin Extended distribution for the failure time data. The P-P plot

and Q-Q plot for the data is given in Figure 7.

4 Record Value Theory for Generalized Lehmann Al-

ternative Type II Exponential Distribution

Let X1, X2, ... be an infinite sequence of i.i.d. random variables having the same

distribution as the (population) random variable X. An observation Xj will be called

an upper record value (or simply a record), if its value exceeds that of all previous

observations. Then Xj is a record if Xj > Xi for every i < j. The time at

which records appear are of interest. Let Xj be observed at time j. Then the

record time sequence {Tn, n ≥ 0} is defined as T0 = 1 with probability 1 and for

n ≥ 1, Tn = min{j : Xj > XTn−1}.The record value sequence {Rn} is then defined

by Rn = XTn ; n = 1, 2, .... Then Rn is called the nth record. Let gRn(x) denote
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Figure 7: QQ plot and PP plot of GLA2E distribution



Lehmann Alternative Type II Family of Distributions 45

the p.d.f. of the nth record. Then

gRn(x) =
g(x)[− log(Ḡ(x))]n

n!
,−∞ < x <∞. (34)

The joint p.d.f. of a pair of records say Rm, Rn is given by

gRm,Rn(x, y) =
[− logG(x)]m−1

(m− 1)!

[
− log G(y)

G(x)

]n−m−1

(n−m− 1)!

g(x)g(y)

1−G(x)
,−∞ < x < y <∞.

(35)

Record data arise in a wide variety of practical situations such as industrial stress

testing, meteorological analysis, hydrology, seismology, sporting and athletic events

and oil mining surveys. In experiments related to these contexts measurements may

be made sequentially and only the record values are observed. Usually the number

of records of such experiments are considerably smaller than the complete sample

size. This ‘measurement saving’ can be important when the measurements of these

experiments are either costly or when the entire sample is destroyed.

Chandler (1952) introduced the study of record values and documented many of

the basic properties of records. Arnold et al. (1998), Balakrishnan and Ahsanullah

(1994), Balakrishnan et al. (1995), etc. have made significant contributions to the

theory of records. Arnold et al. (1998) provide an excellent discussion on various

results with respect to record values. Now we derive some record statistics with

respect to Generalized Lehmann Alternative Type II Exponential distribution with

λ = 1 for which the pdf is

g(x) =
δβeβx

(eβx − δ)2
, x > 0, δ, β > 0, δ = 1− δ (36)

By (34) the density function of the nth record for GLA2E(δ, β, λ) distribution is

given by

gRn(x) =
δβeβx

n![eβx − δ̄]2
[
− ln

(
δ

eβx − δ̄

)]n
, 0 < x <∞ (37)

Then the single moment of nth record statistic can be written as

αn =
1

β

∫ ∞

0
ln(δ + δeu)

un

n!
e−udu. (38)
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Table 3: Mean of upper record values for β = 1.5

n δ =1 δ =1.5 δ=2 δ =2.5 δ=3 δ =3.5 δ =4

1 1.3333 1.5434 1.7005 1.8265 1.9319 2.0225 2.1020

2 2 2.2410 2.4168 2.5554 2.6699 2.7675 2.8526

3 2.6667 2.9226 3.1038 3.2508 3.3691 3.4696 3.5568

4 3.3333 3.5965 3.7846 3.9311 4.0512 4.1528 4.2410

5 4 4.2668 4.4568 4.6044 4.7252 4.8275 4.9161

6 4.6667 4.9352 5.1261 5.2743 5.3955 5.4980 5.5869

7 5.3333 5.6028 5.7941 5.9426 6.0640 6.1666 6.2555

Theorem 4.1. The single moment of nth upper record value for δ > 0.5 is given by

αn =
1

β

{
ln(δ) + (n+ 1)−

∞∑

i=1

ki

i(i+ 1)(n+1)

}
, where k = 1− 1

δ
. (39)

Proof From (38)and using the fact that ln[1− ke−u] = −
∞∑

i=1

kie−iu

i
,

αn =
1

β

{
ln(δ)

∫ ∞

0

une−u

n!
du+

∫ ∞

0

un+1e−u

n!
du−

∞∑

i=1

ki

i

∫ ∞

0

e−(i+1)uun

n!
du

}
,

which on evaluation directly gives (39).

Using the result (39) the mean of record values from GLA2E(δ, β, λ) for different

values of δ and for β = 1.5 and for δ = 1.5 and for different values of β are evaluated

and presented in Table 3 and Table 4.

Theorem 4.2. The second single moment of nth upper record value is

α2
n =

1

β2

{
ln(δ)2 + (n+ 1)(n+ 2) + 2 ln(δ)− 2(n+ 1)

∞∑

i=1

ki

i(i+ 1)n+2
− 2 ln(δ)

×
∞∑

i=1

ki

i(i+ 1)(n+1)
+

∞∑

i=1

∞∑

j=1

ki+j

ij(i+ j + 1)(n+1)

}
. (40)

Proof : From (38) the 2nd single moment of nth record value is given by
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Table 4: Mean of upper record values for δ = 1.5

n β =1 β =1.5 β=2 β =2.5 β=3 β =3.5 β =4

1 2.3150 1.5434 1.1575 0.9260 0.7717 0.6614 0.5788

2 3.3615 2.2410 1.6808 1.3446 1.1205 0.9604 0.8404

3 4.3839 2.9226 2.1919 1.7536 1.4613 1.2525 1.0960

4 5.3948 3.5965 2.6974 2.1579 1.7983 1.5414 1.3487

5 6.4002 4.2668 3.2001 2.5601 2.1334 1.8286 1.6000

6 7.4028 5.1261 3.7014 2.9611 2.4676 2.1151 1.8507

7 8.4042 5.6028 4.2021 3.3617 2.8014 2.4012 2.1010

α2
n =

∫ ∞

0

{
ln[δeu(1− ke−u)]

}2 une−u

(n)!
du, k = 1− 1

δ

= (ln δ)2 + (n+ 1)(n+ 2) + 2(n+ 1) lnδ − 2(n+ 1)
∞∑

i=1

ki

i(i+ 1)(n+2)
− 2

× ln δ
∞∑

i=1

ki

i(i+ 1)n+1
+
∞∑

i=1

∞∑

j=1

ki+j

ij

∫ ∞

0
e−(i+j+1)u u

n

(n)!
du.

On simplification using the fact that (a1 + a2)2 =

2∑

i=1

2∑

j=1

aiaj we get (40).

By (35) the joint pdf of mth and nth record values of GLA2E (δ, β) distribution

is given by

gRm,Rn(x) =

δβ2

[
− ln

{
δ

eβx − (1− δ)

}]m

(m)!

1

[eβx − (1− δ)] .

×

[
− ln

{
eβx − (1− δ)
ey − (1− δ)

}]n−m−1

(n−m− 1)!

× eβy

[eβy − (1− δ)]2 , 0 < x < y <∞.
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Theorem 4.3. For 1 ≤ m ≤ n the product moment

αm,n =
1

β2

{
(ln δ)2 + ln δ(m+ n+ 2) + (m+ 1)(n+ 2)− [ln δ + (n−m)]

×
∞∑

i=1

ki

i(i+ 1)m+1
− (m+ 1)

∞∑

i=1

ki

i(i+ 1)m+2
− ln δ

∞∑

i=1

kj

j(j + 1)n+1
− (m+ 1)

×
∞∑

j=1

kj

j(j + 1)n+2
+

∞∑

i=1

∞∑

j=1

k(i+j)

ij(j + 1)n−m(i+ j + 1)(m+1)

}
(41)

Proof :

αm,n =
δβ2

(m)!

∫ ∞

0
x

[
− ln

(
δ

eβx − δ

)]m−1 eβx

eβx − δ
Ix dx (42)

where

Ix =
1

(n−m− 1)!

∫ ∞

x

yeβy

(eβy − δ)2

[
− ln

(
eβx − δ
eβy − δ

)](n−m−1)

dy

now making use of the transformation u = − ln
(
eβx−δ
eβy−δ

)

and writing ln
[
1−

(
δ−1
ex−δ

)
e−u
]

= −∑∞i=1

(
δ−1
ex−δ

)i
e−iu
i we get

Ix =
1

β2(eβx − δ)

[
ln(eβx − δ) + (n−m)−

∞∑

i=1

(
δ − 1

ex − δ

)i 1

i(i+ 1)n−m

]

substituting the expression of Ix in (42) and using the transformation t = − ln
(

δ
eβx−δ

)

yields (41). Using (39), (40) and (41) numerical values of variance and covariance

of upper record values are obtained by MATLAB program for β = 1.5 and various

values of δ and is presented in Table 5.

4.1 Estimation of the location and scale parameters

In industry experiments, the number of measurements can be made lesser if the

record values are observed instead of complete sample for estimation of parameters.

There are also situations in which an observation is stored if it is a record value. This

includes studies in meteorology, hydrology, seismology athletic events and mining.
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Table 5: Variance and covariance of upper record values for β = 1.5

m n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

1 1 0.8889 0.9747 1.0295 1.0682 1.0973 1.1200 1.1384

2 0.8889 0.9516 0.9900 1.0162 1.0354 1.0502 1.0619

3 0.8889 0.9406 0.9718 0.9929 1.0083 1.0200 1.0293

4 0.8889 0.9353 0.9632 0.9820 0.9957 1.0062 1.0144

5 0.8889 0.9327 0.9591 0.9768 0.9898 0.9996 1.0074

6 0.8889 0.9315 0.9570 0.9743 0.9869 0.9965 1.0041

7 0.8889 0.9308 0.9560 0.9731 0.9855 0.9949 1.0024

2 2 1.3333 1.3943 1.4298 1.4532 1.4699 1.4825 1.4923

3 1.3333 1.3783 1.4039 1.4204 1.4321 1.4408 1.4475

4 1.3333 1.3706 1.3916 1.4051 1.4146 1.4217 1.4271

5 1.3333 1.3669 1.3857 1.3978 1.4063 1.4126 1.4175

6 1.3333 1.3650 1.3828 1.3943 1.4023 1.4083 1.4129

7 1.3333 1.3641 1.3814 1.3925 1.4003 1.4061 1.4106

3 3 1.7778 1.8171 1.8387 1.8524 1.8619 1.8689 1.8743

4 1.7778 1.8070 1.8228 1.8327 1.8396 1.8446 1.8484

5 1.7778 1.8020 1.8151 1.8233 1.8289 1.8330 1.8362

6 1.7778 1.7996 1.8113 1.8187 1.8237 1.8274 1.8303

7 1.7778 1.7984 1.8095 1.8164 1.8212 1.8247 1.8274

4 4 2.2222 2.2463 2.2590 2.2670 2.2724 2.2763 2.2793

5 2.2222 2.2401 2.2496 2.2554 2.2594 2.2622 2.2644

6 2.2222 2.2371 2.2450 2.2498 2.2531 2.2554 2.2572

7 2.2222 2.2356 2.2427 2.2470 2.2500 2.2521 2.2537

5 5 2.6667 2.6809 2.6883 2.6928 2.6959 2.6981 2.6998

6 2.6667 2.6773 2.6828 2.6862 2.6884 2.6901 2.6913

7 2.6667 2.6755 2.6801 2.6829 2.6848 2.6861 2.6871

6 6 3.1111 3.1193 3.1236 3.1261 3.1279 3.1291 3.1300

7 3.1111 3.1173 3.1204 3.1223 3.1236 3.1245 3.1252

7 7 3.5556 3.5602 3.5626 3.5640 3.5650 3.5657 3.5662
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Recently much studies have been made on parametric and non parametric inferences

based on record values. Raquab (2002) obtained inference for generalised exponen-

tial distribution based on record statistics. Soliman et al. made a comparison of

Bayesian and non-Bayesian estimates using record statistics from Weibull model.

Sultan et al. (2008) obtained the estimation from record values and predicted fu-

ture records for gamma distribution. Sultan (2010) discussed different methods of

estimation based on record values from inverse Weibull distribution.

Consider the general location-scale family of distributions with cdf F (x, µ, σ) =

F (x−µσ ) and pdf f(x, µ, σ) = 1
σf(x−µσ ) and assume that the upper record values

R1, R2, ....Rn are available. Then BLUE’s of µ and σ are given respectively by, (see

Balakrishnan and Cochen, 1991)

µ∗ =
αTΣ−1α1TΣ−1 − αTΣ−11αTΣ−1

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2
R =

n∑

i=1

aiRi (43)

σ∗ =
1TΣ−11αTΣ−1 − 1TΣ−1α1TΣ−1

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2
R =

n∑

i=1

biRi (44)

where α denotes the column vector of the expected values of observed upper record

values from the distribution F(x), Σ denotes the variance-covariance matrix of the

record values from the distribution F(x), and 1 is a column vector of dimension n

with all its entries as 1.

The three parameter Generalized Lehmann Alternative Type II exponential distri-

bution has the probability density function given by

g(y) =
δe

(y−µ)
σ

σ(e(
(y−µ)
σ

) − δ)2
, y > µ, δ, σ > 0,

where δ, µ and σ are the shape,location and scale parameters respectively. By mak-

ing use of means, variances and covariances presented in Table 3, Table 4, and Table

5, we calculate the coefficients of BLUEs ai and bi, i=1,2,...n for different values

of shape parameter δ and n and presented in Table 6 and Table 7. It can be noted

from these tables that

n∑

i=1

ai = 1 and

n∑

i=1

bi = 0
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Table 6: Coefficients of the BLUE of µ for β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 2.9999 3.2124 3.3740 3.5058 3.6178 3.7148 3.8004

-1.9999 -2.2124 -2.3740 -2.5058 -2.6178 -2.7148 -2.8004

3 2.0000 2.1061 2.1921 2.2525 2.3077 2.3562 2.3990

-0.0002 0.0262 0.0403 0.0612 0.0750 0.0854 0.0948

-0.9998 -1.1323 -1.2324 -1.3137 -1.3827 -1.4416 -1.4938

4 1.6667 1.7318 1.7818 1.8228 1.8574 1.8880 1.9151

-0.0001 0.0259 0.0410 0.0597 0.0722 0.0819 0.0908

0.0000 0.0087 0.0220 0.0187 0.0221 0.0252 0.0271

-0.6666 -0.7664 -0.8448 -0.9012 -0.9517 -0.9951 -1.0330

5 1.5000 1.5419 1.5750 1.6024 1.6259 1.6469 1.6655

-0.0001 0.0260 0.0414 0.0587 0.0707 0.0800 0.0884

0.0000 0.0096 0.0217 0.0209 0.0243 0.0277 0.0300

0.0000 0.0030 0.0026 0.0066 0.0079 0.0080 0.0089

-0.4999 -0.5805 -0.6407 -0.6886 -0.7288 -0.7626 -0.7928

6 1.4000 1.4268 1.4488 1.4674 1.4837 1.4986 1.5118

-0.0001 0.0259 0.0417 0.0582 0.0699 0.0788 0.0869

0.0000 0.0102 0.0215 0.0220 0.0255 0.0291 0.0316

0.0000 0.0036 0.0042 0.0079 0.0094 0.0097 0.0107

0.0001 0.0008 0.0013 0.0025 0.0023 0.0033 0.0034

-0.4000 -0.4673 -0.5175 -0.5580 -0.5908 -0.6195 -0.6444

7 1.3333 1.3493 1.3635 1.3760 1.3872 1.3978 1.4074

-0.0001 0.0257 0.0418 0.0576 0.0691 0.0779 0.0858

0.0000 0.0106 0.0215 0.0228 0.0266 0.0302 0.0326

0.0000 0.0041 0.0051 0.0087 0.0103 0.0109 0.0121

0.0001 0.0011 0.0019 0.0031 0.0033 0.0040 0.0041

-0.0001 0.0014 0.0009 0.0009 0.0010 0.0006 0.0005

-0.3332 -0.3922 -0.4347 -0.4691 -0.4975 -0.5214 -0.5425
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Table 7: Coefficients for the BLUE of σ for β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 -1.4999 -1.3671 -1.2942 -1.2466 -1.2126 -1.1877 -1.1678

1.4999 1.3671 1.2942 1.2466 1.2126 1.1877 1.1678

3 -1.4999 -1.3824 -1.3162 -1.2729 -1.2415 -1.2181 -1.1996

0.0003 -0.0013 0.0019 -0.0058 -0.0085 -0.0103 -0.0117

0.4996 1.3837 1.3143 1.2787 1.2500 1.2284 1.2113

4 -1.4999 -1.3897 -1.3269 -1.2850 -1.2546 -1.2319 -1.2137

0.0003 -0.0014 0.0018 -0.0064 -0.0090 -0.0109 -0.0127

-0.0001 0.0069 -0.0015 0.0114 0.0119 0.0122 0.0125

1.4997 1.3842 1.3266 1.2800 1.2517 1.2306 1.2139

5 -1.4999 -1.3930 -1.3321 -1.2907 -1.2609 -1.2384 -1.2203

0.0003 -0.0021 0.0016 -0.0067 -0.0094 -0.0113 -0.0132

-0.0001 0.0072 -0.0013 0.0111 0.0120 0.0121 0.0122

0.0001 0.0073 0.0157 0.0119 0.0128 0.0138 0.0140

1.4996 1.3806 1.3161 1.2744 1.2455 1.2238 1.2073

6 -1.4999 -1.3946 -1.3343 -1.2935 -1.2638 -1.2415 -1.2236

0.0003 -0.0022 0.0012 -0.0071 -0.0098 -0.0118 -0.0134

-0.0001 0.0069 -0.0011 0.0113 0.0123 0.0123 0.0121

0.0001 0.0074 0.0154 0.0119 0.0125 0.0138 0.0141

-0.0003 0.0058 0.0087 0.0088 0.0102 0.0099 0.0101

1.4999 1.3767 1.3101 1.2686 1.2386 1.2173 1.2007

7 -1.4999 -1.3957 -1.3355 -1.2951 -1.2654 -1.2430 -1.2251

0.0003 -0.0019 0.0012 -0.0069 -0.0096 -0.0116 -0.0135

-0.0001 0.0068 -0.0014 0.0113 0.0119 0.0121 0.0121

0.0001 0.0074 0.0157 0.0119 0.0128 0.0135 0.0138

-0.0003 0.0061 0.0084 0.0088 0.0097 0.0101 0.0104

0.0005 0.0023 0.0050 0.0060 0.0065 0.0071 0.0075

1.4994 1.3750 1.3066 1.2640 1.2341 1.2118 1.1948
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The variances and covariance of the BLUE’s of µ and σ are given by (see Bal-

akrishnan and Cochen,1991)

V ar(µ∗) = σ2

{
αTΣ−1α

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V1

V ar(σ∗) = σ2

{
1TΣ−11

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V2

Cov(µ∗, σ∗) = σ2

{ −αTΣ−11

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V3

Using these results Variance and covariances of the BLUE’s of µ and σ can be

obtained in terms of σ2 and is presented in Table 8.

Example: Consider a simulated data of failure times which follow GLA2E dis-

tribution with α = δ = 1.5 and λ = 1,

1.3517, 1.8239, 0.1316, 1.18816, 0.8503, 0.1002, 0.3045, 0.6889, 2.3664, 2.4953,

0.1649, 2.6148, 2.3610, 0.5877, 1.2983, 0.1477, 0.4927, 1.9005, 1.2699, 2.3988, 0.9000,

0.0360, 1.4968, 2.0675, 0.9518, 1.1593, 1.1168, 0.4514, 0.8994, 0.1799, 1.0178, 0.0321,

0.3026, 0.0467, 0.997, 1.3860, 0.9900, 0.3524, 2.2593, 0.0348, 0.5173, 0.4368, 1.1830,

1.2803, 0.1975.

The observed upper record values are then,

1.3517, 1.8239, 1.8816, 2.3664, 2.4953, 2.6148.

With n=6, α = δ = 1.5 and λ = 1, the BLUE’s of µ andσ can be computed using

(43), (44) and Tables 6 and 7. The estimates are µ∗ = 0.7837 and σ∗ = 1.7557

The corresponding variances and covariance of µ∗ and σ∗ can be obtained from Ta-

ble 8

V ar(µ∗) = 1.4757, V ar(σ∗) = 0.9132 and Cov(µ∗σ∗) = −0.3122.

5 Confidence interval

Through the pivotal quantities

R1 =
µ∗ − µ
σ
√
V1

, R2 =
σ∗ − σ
σ
√
V2

and R3 =
µ∗ − µ
σ∗
√
V1
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Table 8: Variance and covariances of the BLUE’s of µ and σ in terms of σ2 for

β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 2.6662 3.3570 3.9183 4.3993 4.8230 5.1994 5.5422

0.9998 0.9129 0.8660 0.8363 0.8157 0.8004 0.7887

-1.3330 -1.5104 -1.6437 -1.7524 -1.8447 -1.5834 -1.9931

3 1.7777 2.1912 2.5267 2.7977 3.0384 3.2512 3.4433

0.9998 0.9131 0.8666 0.8373 0.8170 0.8020 0.7904

-0.6666 -0.7636 -0.8395 -0.8945 -0.9435 -0.9854 -1.0224

4 1.4814 1.7968 2.0436 2.2490 2.4255 2.5804 2.7196

0.9998 0.9132 0.8668 0.8375 0.8173 0.8023 0.7908

-0.4444 -0.5137 -0.5651 -0.6064 -0.6408 -0.6701 -0.6960

5 1.3333 1.5968 1.8000 1.9676 2.1103 2.2351 2.3464

0.9998 0.9132 0.8668 0.8376 0.8173 0.8024 0.7909

-0.3333 -0.3880 -0.4284 -0.4608 -0.4876 -0.5106 -0.5306

6 1.2444 1.4757 1.6517 1.7952 1.9170 2.0228 2.1167

0.9998 0.9132 0.8668 0.8376 0.8173 0.8024 0.7910

-0.2666 -0.3122 -0.3457 -0.3724 -0.3946 -0.4134 -0.4299

7 1.1852 1.3939 1.5512 1.6784 1.7857 1.8786 1.9607

0.9998 0.9132 0.8668 0.8376 0.8173 0.8025 0.7910

-0.2222 -0.2612 -0.2900 -0.3128 -0.3318 -0.3479 -0.3619
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where µ∗ and σ∗ are the BLUE’s of µ and σ we construct confidence interval for the

location and scale parameters . We use R1 and R3 to construct CIs for µ when σ is

known and when σ is unknown respectively while R3 is used to construct CI’s for

σ. The construction of CI’s require the percentage points of R1, R2 and R3 which

is obtained by using the BLUE’s µ∗ and σ∗ via Monte carlo simulation based on

10000 runs and are presented in Table 9, 10 and 11 respectively.

6 Application

Now we apply the inference procedure discussed in the previous section to upper

records of simulated data sets of size n=2,3,4,5,6 and 7 (with µ = 0, σ = 1 and

β = 1.5 and δ = 2). The BLUE’s are calculated using Tables 6 and 7 and is

presented in Table 12

Using the BLUE’s given in Table 12 and the percentage points of R1 and R3 we

construct 95% confidence interval for µ when σ known and σ unknown respectively

through the formulae,

P (µ∗ − σ
√
V1R1(97.5) ≤ µ ≤ µ∗ − σ

√
V1R1(2.5)) = 95%

P (µ∗ − σ∗
√
V1R3(97.5) ≤ µ ≤ µ∗ − σ∗

√
V1R3(2.5)) = 95%

We also construct confidence interval for σ using percentage points of R2 through

the formula

P (
σ∗

1 +
√
V2R2(97.5)

≤ σ ≤ σ∗

1 +
√
V2R2(2.5)

) = 95%

The result is presented in table 13.

7 Prediction for Future Records

Prediction of future records becomes a problem of great interest. For example,while

studying the record rainfall or snowfall,having observed the record values until the
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Table 9: Simulated percentage points of R1

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -5.6048 -4.3647 -3.6886 1.0680 1.2553 1.6490

3 -3.7185 -2.8144 -2.4643 0.6801 0.9140 1.3233

4 -2.7703 -2.1807 -1.8877 0.4046 0.6224 0.9843

5 -2.1528 -1.6737 -1.4879 0.2438 0.4602 0.7969

6 -1.8005 -1.4185 -1.2617 0.1494 0.3165 0.6166

7 -1.5893 -1.2325 -1.0969 0.0862 0.2277 0.5063

1.5 2 -5.6466 -4.3540 -3.7946 1.0855 1.2716 1.6391

3 -3.7999 -2.9755 -2.6006 0.7355 0.9606 1.3155

4 -2.8989 -2.2755 -2.0017 0.4559 0.6564 1.0353

5 -2.3951 -1.8908 -1.6573 0.2899 0.4698 0.8471

6 -1.9860 -1.5645 -1.3872 0.1933 0.3909 0.7205

7 -1.7495 -1.3776 -1.2197 0.1200 0.2753 0.5728

2 2 -5.6107 -4.3902 -3.8306 1.0717 1.2635 1.5995

3 -3.9064 -3.0607 -2.6715 0.7296 0.9569 1.3151

4 -3.1229 -2.4339 -2.1276 0.5083 0.7113 1.1249

5 -2.4654 -1.9295 -1.7106 0.3350 0.5625 0.9132

6 -2.1414 -1.6892 -1.4868 0.2611 0.4199 0.7161

7 -1.8242 -1.4775 -1.3091 0.1706 0.3485 0.6791

2.5 2 -5.8927 -4.4976 -3.8838 1.0709 1.2466 1.5387

3 -4.0531 -3.0908 -2.7025 0.7249 0.9657 1.2860

4 - 3.0235 -2.4615 -2.1567 0.5309 0.7412 1.1419

5 -2.6150 -2.0163 -1.7838 0.3883 0.5817 0.9316

6 -2.2246 -1.7543 -1.5669 0.2762 0.4315 0.7423

7 -1.9673 -1.5583 -1.3835 0.1807 0.3479 0.6522

3 2 -5.8003 -4.4627 -3.9436 1.0356 1.2033 1.5224

3 -4.1028 -3.2689 -2.8776 0.7613 0.9902 1.3394

4 -3.1483 -2.5294 -2.2474 0.5344 0.7431 1.1134

5 -2.6157 -2.0956 -1.8573 0.3815 0.5995 0.9595

6 -2.3164 -1.8209 -1.5990 0.3059 0.4818 0.7932

7 -1.9585 -1.5881 -1.4197 0.2162 0.3862 0.7111

3.5 2 -6.2370 -4.6718 -4.0112 1.0674 1.2328 1.5462

3 -4.1166 -3.1950 -2.8594 0.7699 1.0098 1.3219

4 -3.2041 -2.5486 -2.2757 0.5444 0.7572 1.1057

5 -2.7375 -2.1398 -1.9060 0.3761 0.6090 0.9719

6 -2.4066 -1.8791 -1.6463 0.3256 0.5062 0.8187

7 -2.0798 -1.6544 -1.4697 0.2469 0.4224 0.7090

4 2 -6.0906 -4.6749 -4.0870 1.0676 1.2242 1.4689

3 -4.2192 -3.2277 -2.8414 0.7766 0.9953 1.3071

4 -3.2869 -2.6134 -2.3116 0.5683 0.7820 1.1489

5 -2.7192 -2.1562 -1.9143 0.4332 0.6245 0.9703

6 -2.3595 -1.9166 -1.7047 0.3404 0.5247 0.8608

7 -2.1023 -1.6707 -1.4857 0.2233 0.4076 0.7151
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Table 10: Simulated percentage points of R2

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -0.9838 -0.8978 -0.8094 3.9539 4.6854 6.2236

3 -2.9830 -2.5203 -2.2619 0.5187 0.7560 1.3453

4 -0.3644 0.0518 0.3188 4.7602 5.5493 7.2161

5 -0.1531 0.3424 0.5932 4.8116 5.4976 7.0743

6 0.1207 0.5766 0.8148 4.9689 5.5365 7.2471

7 0.2645 0.6930 0.9076 5.0563 5.7481 7.4083

1.5 2 -1.0320 -0.9571 -0.8635 3.8172 4.5124 6.0503

3 -0.7996 -0.4741 -0.2231 4.4816 5.1672 6.6805

4 -0.4557 0.0145 0.2936 4.7694 5.4141 6.9187

5 -0.1041 0.3609 0.6511 4.9347 5.6011 7.2818

6 0.0580 0.5663 0.8464 4.9561 5.6505 7.0729

7 0.3164 0.7543 1.0037 5. 0623 5.7650 7.2539

2 2 -1.0522 -0.9774 -0.8833 3.7763 4.4201 5.9488

3 -0.8191 -0.4983 -0.2563 4.4266 5.1720 6.7478

4 -0.4811 -0.0344 0.2837 4.7767 5.4815 7.1890

5 -0.1934 0.3373 0.6073 4.8510 5.4855 6.9931

6 0.1243 0.5631 0.8653 5.0114 5.6598 7.2408

7 0.3080 0.7478 1.0209 5.0818 5.7963 7.2729

2.5 2 -1.0761 -1.0034 -0.9050 3.7554 4.4691 5.9813

3 -0.8322 -0.4708 -0.2281 4.4342 5.0509 6.7658

4 -0.4872 -0.0288 0.2877 4.7682 5.4150 6.7047

5 -0.1494 0.3359 0.6389 4.8793 0.5533 7.1673

6 0.1229 0.5822 0.8625 5.0375 5.6685 7.1661

7 0.3350 0.8027 1.0718 5.1550 5.7967 7.2462

3 2 -1.0899 -1.0018 -0.9140 3.7177 4.3137 5.6924

3 -0.8224 -0.5342 -0.2882 4.5343 5.2340 6.6902

4 -0.4637 -0.0462 0.2718 4.8124 5.4531 6.8974

5 -0.1437 0.3301 0.6146 4.9329 5.5515 6.8813

6 0.1154 0.5954 0.8826 5.0871 5.7683 7.1481

7 0.3127 0.8421 1.1048 5.1286 5.7708 7.2325

3.5 2 -1.1011 -1.0315 -0.9306 3.7736 4.4235 6.1671

3 -0.8570 -0.5157 -0.2688 4.4775 5.0794 6.6519

4 -0.4731 -0.0485 0.2204 4.7681 5.3593 6.8074

5 -0.1657 0.3277 0.6398 4.9728 5.6169 7.1989

6 0.1388 0.5945 0.9078 5.0823 5.7973 7.4037

7 0.2979 0.8223 1.0760 5.2012 5.8126 7.2913

4 2 -1.1098 -1.0405 -0.9559 3.7920 4.4534 5.8867

3 -0.8337 -0.5448 -0.3060 4.3638 5.0319 6.5454

4 -0.5067 -0.0460 0.2424 4.7966 5.4323 6.8444

5 -0.1765 0.3169 0.6245 4.9266 5.5686 6.9046

6 0.0889 0.5909 0.8859 5.2025 5.8539 7.2088

7 0.3425 0.8379 1.1365 5.1715 5.8387 7.3866
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Table 11: Simulated percentage points of R3

δ n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -0.8146 -0.8057 -0.7950 5.2623 11.2520 77.3761

3 -37.8845 -9.6445 -5.5812 3.5601 7.8030 47.7056

4 -0.3645 -0.3616 -0.3579 0.2737 0.5256 1.3984

5 -0.2881 -0.2860 -0.2830 0.1349 0.2979 0.7678

6 -0.2387 -0.2369 -0.2346 0.0748 0.1703 0.4544

7 -0.2038 -0.2024 -0.2007 0.0370 0.1095 0.3074

1.5 2 -0.8807 -0.8699 -0.8565 6.1249 13.1325 83.0720

3 -0.5461 -0.5394 -0.5315 0.9181 1.5644 4.7084

4 -0.4058 -0.3999 -0.3950 0.3298 0.6046 1.5776

5 -0.3256 -0.3208 -0.3167 0.1638 0.3204 0.8235

6 -0.2733 -0.2694 -0.2660 0.0971 0.2207 0.5773

7 -0.2361 -0.2329 -0.2300 0.0541 0.1424 0.3666

2 2 -0.9223 -0.9085 -0.8927 5.9957 13.1293 60.6882

3 -0.5813 -0.5706 -0.5608 0.9346 1.6818 4.6838

4 -0.4348 -0.4260 -0.4183 0.3842 0.6907 1.8459

5 -0.3518 -0.3445 -0.3390 0.1945 0.3876 0.9591

6 -0.2979 -0.2919 -0.2872 0.1323 0.2514 0.5490

7 -0.2581 -0.2535 -0.2494 0.0802 0.1820 0.4667

2.5 2 -0.9554 -0.9397 -0.9209 6.1792 13.6103 75.7308

3 -0.6022 -0.5899 -0.5798 0.8775 1.6191 4.5777

4 -0.4548 -0.4452 -0.4372 0.3880 0.7019 1.8229

5 -0.3713 -0.3627 -0.3562 0.2331 0.4065 0.9663

6 -0.3147 -0.3076 -0.3025 0.1400 0.2609 0.5943

7 -0.2746 -0.2689 -0.2637 0.0834 0.1789 0.4137

3 2 -0.9783 -0.9606 -0.9432 5.8539 12.0516 76.3009

3 -0.6211 -0.6079 -0.5967 1.0201 1.8443 4.7492

4 -0.4718 -0.4613 -0.4512 0.4103 0.7234 1.6753

5 -0.3866 -0.3764 -0.3692 0.2218 0.4409 1.0340

6 -0.3283 -0.3202 -0.3138 0.1571 0.2892 0.6496

7 -0.2876 -0.2798 -0.2747 0.0984 0.2001 0.4665

3.5 2 -0.9980 -0.9826 -0.9621 6.2831 14.5647 81.5251

3 -0.6344 -0.6206 -0.6077 1.0010 1.7926 5.1915

4 -0.4847 -0.4722 -0.4620 0.4342 0.7484 1.6421

5 -0.3979 -0.3857 -0.3772 0.2309 0.4296 1.0322

6 -0.3406 -0.3294 -0.3225 0.1691 0.3040 0.6460

7 -0.2978 -0.2889 -0.2825 0.1156 0.2176 0.4955

4 2 -1.0122 -0.9956 -0.9728 6.8918 14.7036 88.2247

3 -0.9834 -0.9309 -0.892 3.7529 5.8408 16.5728

4 -0.4957 -0.4807 -0.4700 0.4514 0.7983 1.8950

5 -0.4077 -0.3955 -0.3852 0.2694 0.4615 1.0219

6 -0.3482 -0.3387 -0.3304 0.1817 0.3238 0.6890

7 -0.3047 -0.2967 -0.2904 0.1033 0.2164 0.5076
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Table 12: Upper Record values and BLUE’s of µ and σ forβ = 1.5andδ = 2

n Upper record values µ∗ σ∗

2 1.2920,2.7607 -2.1947 1.9008

3 1.0013,2.2525,2.6529 -0.9837 2.1731

4 1.0193,1.3935,2.1698,3.6395 -1.1536 3.4749

5 0.6795,1.2172,1.6170,3.6803,4.9475 -2.0046 5.6639

6 0.1976,0.2757,0.3639,1.4029,2.3866,2.8864 -1.1791 3.5601

7 1.1294,1.2049,1.4899,1.6223,2.9092,3.0884,3.1585 0.2659 2.6833

Table 13: 95% Confidence interval for µ and σ

n 2 3 4 5 6 7

95%CI forµ (-4.6958,6.4957) (-2.5048,5.2259) (-2.1704,2.3257) (-2.7593,0.5840) (-1.7188,0.9919) (-0.1682, 2.1061)

(σ known)

95%CI forµ (-51.5954,1.2237) (-6.7932,0.9874) (-4.5846,0.9625) (-4.9499,0.6131) (-2.3294,0.1565) (-0.3424,1.1285)

(σ unknown)

95%CI forσ (0.3717,21.0192) (0.3737,4.0533) (0.5693,3.5899) (0.9274,4.3103) (0.5679,2.3356) (0.4195,1.5819)
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Table 14: Predicted records

n simulated records of size (n-1) Predicted value

3 2.3061,3.0550 3.5364

4 1.3610,1.4101,2.0967 4.1160

5 0.8188,1.2812,1.3946,2.2052 7.8762

6 0.3431,0.3987,0.9604,1.5604,3.1596 17.6655

7 0.9136,0.9301,1.1862,1.4686,2.2000,2.6492 13.3136

8 1.1294,1.2049,1.4899,1.6223,2.9092,3.0884,3.1585 17.6038

present time, we will be naturally interested in predicting the amount of rainfall

or snowfall to be expected when the present record is broken for the first time in

future. The best linear unbiased predicted value of the next record can be written

as (see Balakrishnan and Chan, 1998).

yu(n) = µ∗ + σ∗βn

where µ∗ andσ∗ are the BLUE’s based on the first (n-1) records and αn is the

nth moment of record values. Prediction of next upper record value is obtained from

a simulated data and presented in Table 14.

8 Entropy of Record value distribution

Entropy provides an excellent tool to quantify the amount of information (or uncer-

tainty) contained in a random observation regarding its parent distribution. Shan-

non’s(1948) entropy of an absolutely continuous random variable X with probability

density function f(x) is given by

Hx[f(x)] = −
∫ ∞

−∞
f(x)ln[f(x)]dx

The entropy is always non-negative in the case of a discrete random variable X and

is also invariant under one-to- one transformation of X. For a continuous random

variable, entropy is not invariant under one-to-one transformation of X and it takes
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values in (−∞,+∞) .The entropy for some commonly used probability distribu-

tions have been tabulated by many authors. More recently Ebrahmi et al (2004)

have explored the properties of entropy, Kullback - Leibler information and mutual

information for order statistics. Now we discuss the entropy for the record values

of GLA2E (δ, λ). LetH(Rn) be the entropy of the nth record value. Then by Shakil

(2005)

H(Rn) = ln(Γn)− (n− 1)ψ(n)− 1

Γ(n)

∫ ∞

−∞
[− ln(1−G(x))]n−1g(x) ln(g(x))dx (45)

where
∫∞

0 tj−1e−tdt = Γ(j) and
∫∞

0 tj−1e−tln(t)dt = Γ(j)ψ(j) ψ(j) is the digamma

function.

For n = 1 entropy of the first record value is same as the entropy of parent

distribution. Comparison of the entropy of parent distribution and nth record value

for n ≥ 2 is same as comparison of entropy of first record value with entropy of a

given nth record value. Since the first observation from the parent distribution is

always considered as a record value, entropy of the first non-trivial record value is

obtained when n ≥ 2.

Theorem 8.1. For GLA2E (δ, β, λ) distribution if H(j) represents the entropy cor-

responding to jth record, then

H(j) = ln(Γj)− (j − 1)ψ(j) + j − ln(σ) +
∞∑

i=1

ki

i(i+ 1)j
(46)

Proof By (45) the entropy of jth record for GLA2E (δ, β, λ) is

H(j) = ln(Γj)− (j − 1)ψ(j)− 1

Γ(j)

∫ ∞

0

[
− ln

(
δ

eβλx − δ

)]j−1

v(x) ln v(x) dx

where v(x) = δλeβλx

(eβλx−λ)2
. By the transformation t = − ln δ

eβλx−δ and writing

ln(1−ke−t) = −∑∞i=1
kie−it
i where k = 1− 1

α the result (42) can be easily obtained.
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Table 15: Entropy of GLA2E (δ, β, λ)

Record λ = 0.5 λ = 1 λ = 2 λ = 3

2 1.6561 0.9630 0.2698 -0.1356

3 2.0250 1.3318 0.6387 0.2332

4 2.2538 1.5606 0.8675 0.4620

5 2.4118 1.7187 1.0255 0.6200

6 2.5296 1.8364 1.1433 0.7378

7 2.6226 1.9295 1.2363 0.8309

Using (46) the entropy of GLA2E (δ, β, λ) for δ = β = 1.5 and for various record

values and various values of λ are tabulated and presented in Table 15.

9 Conclusion

In this paper, a new family of distributions called Generalized Lehmann Alternative

Type II family of distributions is introduced and explored the statistical properties

such as probability density function (pdf), hazard rate function (hrf), expressions

for cumulative distribution function (cdf), quantile and survival function. Maxi-

mum Likelihood function is obtained for estimation of unknown parameters of the

new family of distributions. Different special models which include Uniform, Ku-

maraswamy models are developed for this new family. The probability density func-

tion (pdf), cumulative distribution function (cdf) and hazard rate function (hrf) are

obtained and plotted the density function for different parameter values. A special

model of this family called Generalized Lehmann Alternative Type II Exponential

distribution is introduced and studied in detail. The statistical properties such as

probability density function (pdf), hazard rate function (hrf), expressions for cu-

mulative distribution function (cdf), quantile and survival function are obtained.

The shapes of the density function and hazard rate function are plotted for different

parameter values. Method of maximum likelihood estimation is used for estimation

of unknown parameters of the new distribution. The new distribution is applied to

a real data set to show the effectiveness of the distribution and it is verified that
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the new model is a better model than the existing exponential model and Marshall-

Olkin extended exponential model. A detailed study on the record value theory

associated with Generalized Lehmann Alternative Type II Exponential distribution

is conducted. Using the mean, variance and covariance of upper record values of the

extended model, BLUE’s of location and scale parameters are obtained and future

records are predicted which has a number of practical uses. The 95% confidence

interval for location and scale parameters are also computed. MATLAB programs

are developed for this purpose. The result is applied to a real data set to validate

the results. Entropy of record values is derived. This result will be useful in char-

acterization of record values based on entropies and a quantification of information

contained in each additional record value based on entropy measure.
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distribution. Communications in Statistics-Theory and Methods. 42: 4091-

4107.

Krishna, E., Jose, K. K., Ristic, M. M. (2013b). Applications of Marshall-Olkin
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tools used to give suggestions to users on the basis of their requirements. In-

crease in number of options: be it number of online websites or number of

products, it has become difficult for the customer to choose from a wide range
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advisory services to the customers and offer them relevant products as per their
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services. So it becomes a challenge to build recommender systems for finan-
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1 Introduction

In today’s competitive world, growing customer base and satisfying them is con-

sidered the most challenging task. Traditional retail banks with physical branches

and high headcounts continue to offer valuable services to consumer but with the

increase in digitalisation it becomes a challenge to retain the loyal customers and

attract new customers by coping with the new technologies. With digitalisation in

financial sector, people expect banks to provide service at their doorstep without

being called to the branches. Also with the younger generation i.e. millennial start-

ing with their banking needs, it becomes essential for the financial sector to keep

pace with modernisation.

Big data in the banking and financial services have been responsible for help-

ing to create better customer experiences and also help protect businesses. The

financial sector and banking institutions can benefit from big data by using that

information to customize audience sets by demographic, behaviour, etc. and offer

them personalized products (Gigli et al., 2017). Big data facilitates banks and fi-

nancial institutions to be more specific about product offerings, likely increasing the

chance that the right product will be offered to the right person (Amakobe, 2015).

Recommender systems (Carlos et. al 2015, Kumar et. al 2017) are beneficial

both to the customer as well as the service providers. These were introduced with

the aim of offering products which seems to be more suitable for the customer based

on their past behaviour, purchase patterns, financial status and so on. Big Industries

like Amazon, Netflix and Facebook uses recommender systems for recommending

products, movies and friends to their customers based on the buying behaviour, rat-

ings and browsing history. The existing recommender systems are generally based

on ratings, likes, feedback or browsing data. Banking industry has also started em-

bracing digitalisation and has initiated steps to attract customers. Though these

techniques are quite common in retail segment like Amazon and across online movie

and music industry, this has yet to come strongly into the financial industry. Rec-

ommender Systems help stop attrition of the customers by providing quick financial

advisory services and help them to find the relevant products at a quick glance be it
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mortgage, savings account, stocks and bonds, investments or loans. Today there are

no such recommendation systems available for financial products to help the cus-

tomers find their suitable products. Unlike the retail industry, for banking industry,

ratings, likes, feedback are not available and so a different methodology had to be

derived to find out a single value which represents the ratings of the customers.

Hence, an attempt has been made to propose a recommendation system for

service institutions like bank in this paper. The proposed system makes use of the

customer demography, income, credit–debit transactions, product holdings etc. to

identify customer behaviour and similarity among other customers to provide a very

efficient and effective product offering. This will result in improved customer service

and customer satisfaction thereby increasing the conversion ratio of the leads and

resulting in increased Product per customer (PPC) of the bank.

The organization of the research paper is as follows. The Section 2 provides

a detailed literature survey. The proposed framework for Recommender system

along with the experimental setup for financial analysis is studied in Section 3. The

detailed analysis and the result are presented in Section 4. The last section presents

the conclusion and the recommendations.

2 Literature Survey

A recommender system is a technology that is deployed in the environment where

items (products, movies, events, articles) are to be recommended to users (cus-

tomers, visitors, app users, readers) or the opposite (https:/medium.com/recombee-

blog/recommender-systems-explained-d98e8221f468). Typically, large number of

users and large number of products make it difficult and expensive to know/study

every customer’s preference and offer the right product or to identify the right cus-

tomers for each product. Efficient and effective recommender systems are a solution

to such situations. Recommender systems provide ratings/preference order to the

unrated products based on their past ratings for other products.

Recommender systems (RS) filtering can be categorized into three main ap-

proaches. According to Su and Khoshgoftaar (2009) they are
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1. Content based filtering: Recommends items by matching attributes with other

items that a given user have rated. In content-based recommender systems, a

recommendation is based on the relation between the attributes of items that

a given user has previously rated and items which the user have not yet rated.

2. Collaborative filtering: Collaborative fultering (CF) based systems propose

items based on an analysis of user feedback along with the preferences of

similar users. This additional robustness makes CF the most widely used and

successful RS method. Recommends items by comparing a given user with a

set of users that have rated other items similarly.

3. Hybrid filtering: Recommends items by combining different type of approaches

together. This technique overcomes the drawbacks of content based and collab-

orative filtering technique and improves prediction performance. These have

increased complexity and expense for implementation. Also require additional

data like unstructured data which is not easily available.

The proposed framework makes use of structured data and user-item similarity based

on collaborative filtering technique. Note that, Collaborative filtering (CF) systems

have two main approaches for filtering, namely memory-based and model-based.

Memory-based collaborative filtering techniques also called neighbourhood-based

collaborative filtering includes clustering, user-user and item-item similarity based

CF. The methods are based on the correlations or similarity metrics like cosine, Jac-

card (Bag et. al 2019) between users and items to produce a preference score that

predicts the likelihood of a user acquiring an item in the future and provide corre-

sponding recommendations. User and item-based algorithms are the most common

types of memory-based recommendation methods. User-based methods generate

recommendations according to the similarities between users, whereas item-based

methods compute similarities within a space of items to find strong relationships

with items that have already been rated by an active user. These techniques are

simple and easy to implement. These techniques use the entire dataset to clas-

sify or identify the similarity among customers. The Model-based approach devel-
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ops a model based on the existing user-item ratings thereby taking a probabilistic

approach to calculate the expected value of a user for a particular item. Model

based collaborative filtering approach applies statistical method and machine learn-

ing technique like Neural Network, Singular Value Decomposition, principal compo-

nent analysis etc. for mining the rating matrix. In many cases, the ratings matrix is

sparse as ratings for every user to item may not exist. These techniques work better

with sparse matrix by dimensionality reduction and thereby improve performance.

(Su and Khoshgoftaar (2009) and Vijaya Kumar et al. (2014)).

The study presented here compares the performance of two collaborative filter-

ing approaches i.e. memory-based and model-based, using banking industry data.

Sarwar et al. (2001) and many others have discussed about both memory-based

and model-based techniques in different areas. In this paper, we have implemented

both memory based and model based approach for banking dataset to study the

performance. The performance of each approach was evaluated using offline testing

and user-based testing.

3 Proposed data framework

The proposed framework is to develop recommender systems to offer retail segment

products like loans/deposits/ investments to the banking customers as per their life

cycle or behavioural requirements. The uses of big data in banking industry are

discussed by Amakobe (2015) in the areas of fraud detection, marketing and credit

risk management. In India, banks are offering different products to the customers

based on their eligibility. But for customer satisfaction, offering right products to

the right customers at the right time is more essential. This improves the customer

relationship wherein the customer feels that the bank understands their requirements

and offers the products well in advance even before the customer reaches out to the

bank for his requirements.

In practice, many commercial recommender systems are used to evaluate very

large product sets. The user-item matrix used for collaborative filtering will thus

be extremely sparse and the performances of the predictions or recommendations
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of the CF systems are challenged. The data sparsity challenge appears in several

situations, specifically, the cold start problem occurs when a new user or item has

just entered the system, it is difficult to find similar ones because there is not enough

information (in some literature, the cold start problem is also called the new user

problem or new item problem). New items cannot be recommended until some

users rate it, and new users are unlikely given good recommendations because of

the lack of their rating or purchase history (Su and Khoshgoftaar, 2009). In our

study also, we face data sparsity issue as more than 70% of the customers hold only

Savings bank account with the bank and so the scores for remaining products are

not available.

Banking data is very rich and confidential in the sense that it contains all the

financial details of the customer like income, loans that he has already availed (for

house, education, vehicle etc.), deposits (which shows the liquidity he is holding),

investments, spending pattern etc. The data becomes even richer if we make use

of unstructured data like transaction mining, browsing history of customers, social

media data etc. In this framework we are going to make use of only structured data

i.e. the demographics, product holdings, geography, transaction, external bureau

data etc. in our study.

Experimental setup: The data of specific set of customers from a bank ABC

is considered for the study. Customers getting regular income/salaried in the last

six months were included for the study. Data preparation includes missing value

imputation and outlier detection. For instance: the birth date of a customer may

be a default value or incorrect which gives some unrealistic figure as age or in some

cases the birth date may be missing so in these cases, the missing value imputation

is done either by using the average value or some other technique depending on the

variable. For outlier detection, extreme values are discarded and coerced at 3sigma

values. The Data mining process is done using SQL and SPSS Modeller. After data

preparation, the biggest challenge is to prepare a user-item rating matrix which will

be used as an input for the model. This input matrix has a rating for each customer

– product combination.
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Ratings/score are the heart of recommendation engines. There are two types of

ratings viz. explicit and implicit ratings. Recommender systems that are developed

for movie reviews or for e-commerce sites are based on the ratings /feedbacks/likes

received from the customers known as explicit ratings. Explicit data is one-action

feedback: a single click tells us that a user liked a video or rated a product positively.

Explicit data has its own advantages and disadvantages. These are always more

valuable to businesses as it is given by the user himself and is clear, unambiguous,

and gives a definite picture of the user. But explicit data may also be shallow. Like

if a user provides ratings haphazardly only because it was mandatory to provide

ratings then the ratings become meaningless (Aggrawal, 2016). For example: Many

social media platforms like Face book, twitter etc. have the feature to like a content

displayed but the unlike option is not available. Similarly, it is observed that people

generally do not provide any positive feedback for any services or applications used

but always approach the page for negative feedbacks/complaints. This would result

in biased opinion about the product.

One of the challenges of recommender systems in the wider commercial world is

that one rarely has explicit ratings data. For example in banking sector there is no

concept of providing feedback or rating to a particular product. However, there is

often nontrivial information about the interactions, e.g. clicks, purchases, spending

pattern etc. Such indirect ”ratings” information about user-item interactions is

known as implicit feedback. Modelling implicit feedback is a difficult but important

problem. The main challenge here is to derive the ratings. The accuracy of the

model wholly depends on the ratings and hence at most care has to be given while

deriving the implicit ratings. Here we will be dealing with implicit ratings as explicit

ratings are not available for banking dataset.

Deriving Score: Implicit ratings have to be derived based on the user behaviour/pattern

available. These can be derived either based on some existing document/score

card/parameters for a particular item or based on the significant parameters iden-

tified through feature selection method. We have performed feature selection for

each product separately to identify the significant parameters contributing to each
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Figure 1: Word cloud for housing loan parameters

product. Since the behaviour and requirement of each product is different from each

other, the weightage of parameters and significance may also differ. For example the

parameters found significant for housing loan is shown below in the form of word

cloud (Figure 1). Based on the weightage and significance of parameters, a score is

derived for each product–customer combination. For instance: If a Customer (C1)

has availed a housing loan and his annual income is 16 lakhs whose occupation is

State Government employee, EMI is 30% of his net monthly income, then the rating

for customer C1 for housing loan will be 35 (= weight assigned to income bracket

“¿15 lakhs”) +30 (= weight assigned to state government employees) + 10 (weight

assigned to EMI bracket 20-30%). So the score for pair C1–housing loan will be 75.

Data Set: The input matrix used for experiment consists of 1.4 crore rows and

8 columns i.e. approximately 1.4 crores customers and eight products viz. home

loan, auto loan, personal loan, pension loan, deposit products like recurring deposit,

fixed deposit and investment products like PPF and Mutual Fund. So the input

matrix with implicit rankings should ideally be like the table as mentioned below:

But since in our case, only 20% of the total customers had availed any other product

other than the basic savings bank account, it resulted in a sparse matrix as shown

in Table 2.

4 Methodology

In real life scenario, we may be more interested in identifying the top k preferences

of a customer rather than estimating the rating that he will give to a particular
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Table 1: Input table

User Product

Savings

Account

Home

Loan

Auto

Loan

Personal

Loan

Pension

Loan

Mutual

Fund

PPF Fixed

Deposit

X1 85 56 43 12 32 25 35 43

X2 72 34 23 55 21 44 55 34

— — — — — — — — —

Table 2: Sparse matrix table

User Product

Savings

Account

Home

Loan

Auto

Loan

Personal

Loan

Pension

Loan

Mutual

Fund

PPF Fixed

Deposit

X1 32 0 0 43 0 0 0 0

X2 43 0 0 0 0 0 58 43

X3 67 0 45 0 0 0 0 23

— — — — — — — — —
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product. For instance: the rating a customer may give to a home loan product

based on its features like interest rates etc. may be high but it may not be his

top preference. In this paper we will be discussing the method to identify the top

preferences of a customer based on customer similarity which is also known as the

top-k recommendation problem (Aggarwal, 2016). In this paper we will discuss

about the collaborative filtering techniques for recommending the top-k products to

a customer. Two types of CF techniques viz. memory-based and model-based CF

methods are included in this paper.

Memory based CF further includes: k- means clustering technique to segregate

the heterogeneous set of customers into homogeneous set thereby identifying the

similar set of customers. This method is performed using SPSS Modeller on a system

of 64 bit of 48GB RAM and 1 TB storage capacity. This clustering technique gave

a silhouette score of 0.6. However, the clusters obtained by this technique were not

much differentiable which could be due to sparsity in the data. Thus, clustering

technique does not seem to work well with sparse dataset, which is a drawback of

this method. The next technique within memory-based CF used here is user-user

similarity using Python. This method uses the entire dataset to find similarity

among the customers. But due to huge volume of data, the data could not be

processed and hence data scalability seems to be a drawback for user-user similarity

technique.

Thus major challenges in memory based recommender systems are data sparsity,

scalability, diversity etc. Data sparsity leads to the cold start problem i.e. new

customers with no purchase history. Also, when number of existing users and items

grow tremendously, traditional CF algorithms will suffer serious scalability problems.

These problems can degrade the performance of recommendation process.

To achieve better prediction performance and overcome shortcomings of memory-

based CF algorithms, model-based CF approaches have been investigated. Model

based CF techniques use the rating data to estimate and predicts the top-k prefer-

ences (Su and Khoshgoftaar, 2009). Model based CF algorithms include methods

such as Bayesian belief nets, Markov Decision Process-based CF, Dimensionality
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reduction techniques like Singular Value Decomposition (SVD) that are capable of

handling problems like data sparsity and scalability.

To overcome the drawbacks of memory-based CF i.e. data sparsity and scalabil-

ity, Simon Funk’s Singular Value Decomposition (SVD) technique which is a model

based CF technique is studied in this paper. SVD techniques are dimensionality

reducing techniques and hence are known for predicting the ratings for large scale

data. After its Success in Netflix Price, Simon Funk’s SVD has become a common

approach in dealing with huge sparse matrices. Here, the actual rating matrix (A)

is decomposed into three matrices as below:

A = USIT ,

where U is the latent factors matrix of the users, S explains the relationship between

the latent factors of the user and item, I is the latent factors matrix of the items.

In this case by latent factors we mean characteristics of the user/item.

The resulting dot product calculates the ratings for all user-item pair by minimising

the squared error. That is for each rating, error is calculated as

Eij = Rij − R̂ij .

Using the error values, new values in the User matrix and Item matrix are updated

as below. A regularisation parameter is added to the equation to avoid over fitting

of the generalised model.

Ui = 2α ∗ (A− P ) ∗ Ui; Ui = ith Value in User matrix

Ij = 2α ∗ (A− P ) ∗ Ij ; Ij = jth value in Item matrix,

where α is the learning rate. By multiple iterations, the error is minimized using the

gradient descent function. Thus, the nearest approximation is arrived at and the

item/service with highest rating is offered as the next best product for the customer.

Our dataset is divided geography-wise into 18 data sets. Each data set consists

of approximately 7-8 lakhs data. Only 20% of the customers have availed any other

product other than SB. Therefore, the ratings matrix obtained is sparse and hence to
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deal with data sparsity, Stochastic Gradient Descent (SGD) is used along with SVD

popularly as mentioned above to optimize the ratings and thereby minimizing the

error. SVD predicts the user-item ratings and hence the error between the actual

and the predicted rating value can be calculated. Using the stochastic gradient

descent we try to minimize the error through multiple iterations and obtaining the

local minima value of error giving the nearest predicted value and increasing the

accuracy.

The quality of a recommender system can be decided based on the result of

evaluation and interpretation based on business logic. According to Herlocker et

al. (2004), metrics evaluating recommendation systems can be broadly classified

into the following categories: predictive accuracy metrics, such as Mean Absolute

Error (MAE) and its variations; classification accuracy metrics, such as precision,

recall, F1-measure, and ROC sensitivity; rank accuracy metrics, such as Pearson’s

product-moment correlation, Kendall’s Tau, Mean Average Precision (MAP), half-

life utility, and normalized distance-based performance metric (NDPM). We only

introduce the commonly-used CF metrics Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) here. MAE computes the average of the absolute

difference between the predictions and true ratings. The MAE and RMSE are given

by

MAE =

∑
ij |pij − rij |

n
(4.1)

and

RMSE =

√
1

n

∑

ij

(pij − rij)2, (4.2)

where n is the total number of ratings over all users, pij is the predicted rating

for user i on item j, and rij is the actual rating. The lower the MAE betters the

prediction. The RMSE shown in (4.2) amplifies the contributions of the absolute

errors between the predictions and the true values. Both MAE and RMSE do not

have any upper bounds or lower bounds that justify whether the predictive power

or accuracy is good or not. They are only comparable with respect to previous trail

or with any other dataset.
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Figure 2: Plot of RMSE (a) set-1, (b) set-2

(a) (b)

Here Funk’s SVD is performed with 250 iterations and the learning rate and

regularization parameters (Aggrawal, 2016) were finalised based on trial and error

methods. The RMSE values become stable after some iteration as shown in Figures

2 (a) and (b) below. The results are also validated as per business logic and it is

observed that customers with single product i.e. the cold start problem are also

handled well by the algorithm as per their ratings and the suggestions were efficient

enough. For example: A person having a tendency of saving is offered investment

products like FD, Mutual Funds etc., while a person with existing liability product

like home loan may be offered a personal loan. Thus, deriving the score/rating

plays a vital role in recommender systems. Therefore, model based CF using Simon

Funk’s SVD has proved to be providing efficient results.

Table 3 presents the recommendation of the CF algorithm for some select cases.

The table may be interpreted as follows: For user-0, the first preference is item

number 5 (ie. Recurring deposit), the second preference is item number 7 (mutual

fund), and so on. The preference table is shown in Table 4.
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Table 3: Recommendation in terms of preferences

User Item0 Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8

0 54 75 33 12 53 87 10 66 47

1 42 30 13 53 77 10 64 23 87

2 68 74 21 13 10 34 87 58 49

3 41 81 11 63 30 21 72 35 56

4 29 62 74 20 83 30 12 54 41

5 57 60 31 12 23 20 81 73 46

6 40 79 28 10 84 18 57 31 60

7 22 72 ‘62 10 82 17 58 34 40

8 43 55 81 32 14 76 20 27 69

9 41 23 75 20 31 15 86 60 54

10 35 12 26 13 82 66 77 50 45

Table 4: Item preference table

Preference

Item 0 SB

Item 1 Home Loan

Item 2 Car Loan

Item 3 Personal Loan

Item 4 Pension loan

Item 5 Recurring Deposit

Item 6 Fixed Deposit

Item 7 Mutual Fund

Item 8 PPF
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5 Conclusion

The traditional method of offering products to customers without considering their

requirement/preference causes irritation among the customers thereby leading to

dissatisfaction. Collaborative filtering based recommender systems are the latest

techniques that can be used to identify a customer’s preference among certain set

of products. In this paper, we have discussed memory- based and model-based ap-

proaches. In memory-based approach, k-means clustering and user-user similarity

were studied. But because of data sparsity and scalability, these approaches did not

work for the bank dataset. Whereas, the model-based approach helped in dealing

with the data sparsity and scalability and provided efficient results. The proposed

framework will help to provide the right product to the right customer. Thereby, im-

proving the customer relationship and satisfaction with the bank. This also helps in

reducing the customer attrition rate and increasing the product per customer index.

The proposed system though better than the traditional system may have many

shortcomings in case of data gaps like unknown salary, inadequate transaction data

etc. This can be overcome with the help of Collaborative filtering techniques using

big data tools. Capturing the digital footprints of the customer and implementing

Hybrid collaborative filtering may also help in improving the prediction power of

the models. The newer generation customers expect doorstep banking by ways of

digitisation and with increasing levels of expectation they have the tendency of high

attrition rate on getting good offers by the competitors. Therefore it is important to

foresee the customers’ preference and offer the products accordingly to reduce the

attrition rate. Thus Recommender systems can be of huge benefit for the financial

industry by using it wisely to attract customers.
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ABSTRACT

In the design of experiments for estimating the slope of the response surface,

slope rotatability is a desirable property. In this paper, measure of slope rotata-

bility for second order response surface designs using central composite designs

under tri-diagonal correlation error structure is suggested and illustrated with

examples.
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1 Introduction

Response surface methodology is a collection of mathematical and statistical tech-

niques useful for analyzing problems where several independent variables influence
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a dependent variable. The independent variables are often called the input or ex-

planatory variables and the dependent variable is often the response variable. An

important step in development of response surface designs was the introduction of

rotatable designs by Box and Hunter (1957). Das and Narasimham (1962) con-

structed rotatable designs using balanced incomplete block designs (BIBD). The

study of rotatable designs mainly emphasized on the estimation of absolute re-

sponse. Estimation of response at two different points in the factor space will often

be of great importance. If differences at two points close together, estimation of

local slope (rate of change) of the response is of interest. Hader and Park (1978)

extended the notion of rotatability to slope rotatability for the case of second order

models. In view of slope rotatability of response surface methodology, a good esti-

mation of derivatives of the response function is more important than estimation of

mean response. Estimation of slopes occurs frequently in practical situations. For

instance, there are cases in which we want to estimate rate of reaction in chemical

experiment, rate of change in the yield of a crop to various fertilizer doses, rate of

disintegration of radioactive material in animal etc. (cf. Park 1987). Victorbabu

and Narasimham (1991) studied second order slope rotatable designs (SOSRD) us-

ing BIBD. Victorbabu (2007) suggested a review on SOSRD. To access the degree

of slope rotatability Park and Kim (1992) introduced a measure for second order

response surface designs. Victorbabu and surekha (2011) studied measure of slope

rotatability for second order response surface designs using central composite designs

(CCD).

Many authors have studied rotatable designs and slope rotatable designs assum-

ing errors to be uncorrelated and homoscedastic. However, it is not uncommon to

come across practical situations when the errors are correlated, violating the usual

assumptions. Das (1997, 2003a) introduced and studied robust second order rotat-

able designs. Das (2003b) introduced slope rotatability with correlated errors and

gave conditions for the different variance-covariance error structures. To access the

degree of slope rotatability for correlated errors a new measure for second order

response surface designs was introduced by Das and Park (2009). Rajyalakshmi
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and Victorbabu (2014, 15, 18, 19) studied SOSRD under tri-diagonal structure of

errors using CCD, pairwise balanced designs, symmetrical unequal block arrange-

ments (SUBA) with two unequal block sizes and BIBD respectively. Sulochana and

Victorbabu (2020a, 2020b) studied SOSRD under tri-diagonal correlated structure

of errors using a pair of SUBA with two unequal block sizes and a pair of BIBD

respectively. Sulochana and Victorbabu (2020c, 2021a, 21b, 21c) studied measure of

slope rotatability for second order response surface designs under intra-class corre-

lated structure of errors using PBD,CCD, BIBD and SUBA with two unequal block

sizes respectively.

In this paper, following the works of Park and Kim (1992), Das (2003a, 2003b,

2014), Das and Park (2009), Surekha and Victorbabu (2011), Rajyalakshmi and Vic-

torbabu (2014), the measure of slope-rotatability for second order response surface

designs with tri-diagonal correlation error structure using CCD for ρ(0.9 ≤ ρ ≤ 0.9)

for 2 ≤ v ≤ 8 (v number of factors) is suggested.

2 Preliminaries

2.1 Tri-diagonal correlation structure

The tri-diagonal structure of errors arises when the variance is same (σ2) and the

correlation between any two errors having lag n is ρ, and 0 (zero) otherwise. The

tri-diagonal error structure with 2n observations is given below. (cf. Das (2014)

p.30).

W =



D(e) = σ2




In In

In In


× 1 + ρ

2
+


 In −In
−In In


× 1− ρ

2


 = W2n×2n(ρ), say
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σ2
)−1
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× 1
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2.2 Conditions of slope rotatability for second order response sur-

face designs with tridiagonal correlation error structure (Das

2003a, 2003b, 2014)

A second order response surface design D = (Xui) for fitting,

Yu(X) = b0 +
v∑

i=1

biXui +
v∑

i=1

biiX
2
ui +

n∑

i≤j=1

bijXuiXuj + eu; 1 ≤ u ≤ 2n (2.1)

where Xui denotes the level the ith factor (i = 1, 2, . . . v) in the uth run (u =

1, 2, . . . 2n) of the experiment, eu’s are correlated random errors, is said to be a

SOSRD under tri-diagonal correlated structure of errors, if the variance of the es-

timate of first order partial derivative of Yu(Xu1, Xu2, Xu3 . . . , Xuv) with respect to

each independent variable (Xi) is only a function of the distance
(
d2 =

∑v
i=1X

2
i

)

of the point (Xu1, Xu2, Xu3 . . . , Xuv) from the origin (center of the design). i.e,

V
(
∂Ŷu
∂Xi

)
= h

(
d2
)
. Such a spherical variance function h(d2) for estimation of slopes

in the second order response surface is achieved if the design points satisfy the fol-

lowing conditions (see, Das 2003a, 2003b and 2014, Rajyalakshmi and Victorbabu

2014, 2015, 2018, 2019).

Following Box and Hunter (1957), Hader and Park (1978), Victorbabu and

Narasimham (1991a), Das (2003a, 2003b and 2014), Rajyalakshmi and Victorbabu

(2014, 2015, 2018, 2019) the general conditions for second order slope rotatability

under the tri-diagonal correlated structure of errors can be obtained as follows. To

simplify the fit of the second order polynomial from design points D through the

method of least squares, we impose the following simple symmetry conditions on D

to facilitate easy solutions of the normal equations. (cf. Das, 2014, p. 67, 112-114).



Measure of Slope Rotatability with Tri-Diagonal Error Stricture Using CCD 89

(I)

(i)

2∑

u=1

nXuj = 0; 1 ≤ j ≤ v,

(ii)
2∑

u=1

nXujXui = 0; 1 ≤ j < 1 ≤ v,

(iii)
2∑

u=1

nXuiXuj − ρ
{

n∑

u=1

X(n+u)iXuj +
n∑

u=1

XuiX(n+u)j

}
= 0, 1 ≤ i 6= j ≤ v,

(iv)
2∑

u=1

nX2
uiXuj − ρ

{
n∑

u=1

X2
(n+u)iXuj +

n∑

u=1

X2
uiX(n+u)j

}
= 0, 1 ≤ i 6= j ≤ v,

(v)
2n∑

u=1

XuiXujXul − ρ
{

n∑

u=1

X(n+u)iX(n+u)jXul +
n∑

u=1

XuiXujX(n+u)l

}
= 0, (2.2)

, 1 ≤ i 6= j ≤ v, 1 ≤ l ≤ v,

(vi)
2n∑

u=1

X2
uiXujXul − ρ

{
n∑

u=1

X2
(n+u)iX(n+u)jXul +

n∑

u=1

X2
uiXujX(n+u)l

}
= 0, (2.3)

1 ≤ i ≤ v, 1 ≤ j < l < v,

(vii)

2n∑

u=1

XuiXujXulXut − ρ
{

n∑

u=1

X(n+u)iX(n+u)jXulXut +

n∑

u=1

XuiXujX(n+u)lX(n+u)t

}
= 0,(2.4)

1 ≤ i < l < j ≤ v, 1 < t ≤ v; (i, j) 6= (1, t) 6= j ≤ v, 1 ≤ l ≤ v,

2n∑

u=1

X2
ui = a constant = 2nλ2, for all i, (2.5)

2n∑

u=1

X4
ui = constant = c2nλ2, for all i, (2.6)

2n∑

u=1

X2
uiX

2
uj = constant = 2nλ4, for all values i 6= j (2.7)

2∑

u=1

nX4
ui = c

2∑

u=1

nX2
uiX

2
uj (2.8)

Using (2.3), (2.4) and (2.5) the design parameters of the tri-diagonal correlated

structure are as follows:
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(II)

(i)(1− ρ)
{
σ2(1− ρ2)

}−1 2n∑

u=1

X2
ui =

2nλ2(1− ρ)

σ2(1− ρ2) (> 0), 1 ≤ j ≤ v,

(ii)
{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X2
ui − 2ρ

n∑

u=1

XuiX(n+u)i

]
=

2nλ2
σ2(1− ρ2)(> 0), 1 ≤ i ≤ v,

(iii)
{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X4
ui − 2ρ

n∑

u=1

X2
uiX

2
(n+u)i

]
= c

[
2nλ4

σ2(1− ρ2)

]
(> 0), 1 ≤ i ≤ v,

(iv)
{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X2
uiX

2
uj − ρ

[
n∑

u=1

X2
(n+u)iX

2
uj −

n∑

u=1

X2
uiX

2
(n+u)j

]]
=

[
2nλ4

σ2(1− ρ2)

]
(> 0), 1 ≤ i 6= j ≤ v,

(v)
{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X2
uiX

2
uj − 2ρ

[
n∑

u=1

XuiXujX(n+u)iX(n+u)j

]]
=

[
2nλ4

σ2(1− ρ2)

]
(> 0),

1 ≤ i < j ≤ v,

From (II) of (iii), (iv) and (v)

{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X4
ui − 1ρ

n∑

u=1

X2
uiX

2
(n+u)i

]
= 2

({
σ2(1− ρ2)

}−1)

[
2n∑

u=1

X2
uiX

2
uj − 2ρ

[
n∑

u=1

XuiXujX(n+u)iX(n+u)j

]]

+
{
σ2(1− ρ2)

}−1
[

2n∑

u=1

X2
uiX

2
uj − ρ

[
n∑

u=1

X2
(n+u)iX

2
uj −

n∑

u=1

X2
uiX

2
(n+u)j

]]

which implies to

c

(
2nλ4

σ2(1− ρ2)

)
= η

[
2

(
2nλ4

σ2(1− ρ2)

)
+

(
2nλ4

σ2(1− ρ2)

)]

where c = 3η, n = 2n, η, λ2 and λ4 are constants. The summation is over the

designs points, and ρ is the correlation coefficient.

The variance and covariances of the estimated parameters under the tri-diagonal
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correlated structure of errors are as follows:

V
(
b̂0

)
=

σ2λ4(c+ v − 1)(1 + ρ)

2n∆
(2.9)

V
(
b̂i

)
=

σ2(1− ρ2)
2nλ2

(2.10)

V
(
b̂ij

)
=

σ2(1− ρ2)
2nλ4

(2.11)

V
(
b̂ii

)
=

σ2(1− ρ2)
[
λ4(c+ v − 2)− (v − 1)λ22(1− ρ)

]

(c− 1)(2n)λ4∆
(2.12)

Cov
(
b̂0, b̂ii

)
= −σ

2λ22(1− ρ2)
2n∆

(2.13)

Cov
(
b̂ii, b̂ij

)
=

σ2(1− ρ2)
[
λ22(1− ρ)− λ4

]

(c− 1)(2n)λ4∆
(2.14)

where ∆ =
[
λ4(c+ v − 1)− vλ22(1− ρ)

]
and the other covariances are zero.

An inspection of the variance of b̂0 shows that a necessary condition for the

existence of a nonsingular second order slope rotatable design with tri-diagonal

correlated structure is

[
λ4(c+ v − 1)− vλ22(1− ρ)

]
> 0 (2.15)

λ4
λ22

>
v(1− ρ)

c+ v − 1
(non− singularity condition) (2.16)

If the non-singularity condition (2.14) exists, then only the design exists.

For the second model

∂Ŷu
∂Xi

= b̂i + 2b̂iiXi +

v∑

i=j 6=i
b̂ijXj ,

V

(
∂Ŷu
∂Xi

)
= V

(
b̂i

)
+ 4X2

i V
(
b̂ii

)
+

v∑

i=j 6=i
X2
j V
(
b̂ij

)
(2.17)

The condition for right hand side of equation (2.15) to be a function of (d2 =
∑v

i=1X
2
i ) alone (for slope rotatability) is clearly,

V
(
b̂ii

)
=

1

4
V
(
b̂ii

)
(2.18)

Equation (2.16) leads to condition,

cNλ4
(1− ρ2)(1 + ρ)

[
4N − (c+ v − 2)N + v

(
Nλ22(1− ρ)

λ4

)]
+

N2λ4
(1− ρ2)(1 + ρ)

[5v−9]−N2λ22

[
5v − 4

(1 + ρ)2

]
= 0

(2.19)
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where N = 2n. Simplifying (2.17) gives rise,

λ4[v(5− c)− (c− 3)2] + λ22[v(c− 5) + 4](1− ρ) = 0 (2.20)

For ρ = 0, equation (2.18) reduces to

λ4[v(5− c)− (c− 3)2] + λ22[v(c− 5) + 4] = 0 (2.21)

Equation (2.19) is similar to the SOSRD condition of Victorbabu and Narasimham

(1991a).

Therefore, equations (2.2) to (2.12), (2.14) to (2.18) give a set of conditions

for SOSRD under tri-diagonal correlated structure of errors for any general second

order response surface design.

On simplification of (2.15) using (2.7) to (2.12) and (2.16), we have,

V

(
∂Ŷu
∂Xi

)
= V (b̂i) + 4X2

i

V
(
b̂ij

)

4
+

v∑

i=1,j 6=i
X2
j V
(
b̂ij

)

V

(
∂Ŷu
∂Xi

)
= V (b̂i) +

v∑

i=1

X2
i V
(
b̂ij
)

V

(
∂Ŷu
∂Xi

)
= V (b̂i)V

(
b̂ij

)
d2

where d2 =
∑v

i=1X
2
i and V

(
b̂i

)
, V
(
b̂ij
)

are stated in (2.8) and (2.9). Further, we

have

V

(
∂Ŷu
∂Xi

)
=

1− ρ2
N

(
1

λ2
+
d2

λ4

)
σ2 (2.22)

where N = 2n.

2.3 Slope rotatability for second order response surface designs

with tri-diagonal correlation error structure using CCD (Ra-

jyalakshmi and Victorbabu (2014))

Following the works of Hader and Park (1978), Victorbabu and Narasimham (1991),

Das (2003a, 03b, 2014), Rajyalakshmi and Victorbabu (2014), the method construc-

tion of slope rotatability for second order response surface designs with tri-diagonal

correlation error structure using CCD is given below.
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Central composite designs are obtained by adding suitable factorial combinations

(±1,±1, . . . ,±1) to those obtained from 2t(v) fractional (or a suitable fractional repli-

cate of 2v in which no interaction less than five factors is confounded). The 2v addi-

tional fractional combinations in CCD are (±α, 0, . . . , 0), (0,±α, 0 . . . , 0), . . . (0, 0, . . . ,±α)

and n0 central points (0, 0, ..., 0) if necessary. The total number of factorial com-

binations in the design can be written as N = F + T . Here F is total number of

fractional points. i.e., F = 2t(v) and T = 2v + n0.

Here we consider a slope rotatable central composite designs of Hader and Park

(1978) having ′n′(n = F + 2v) non-central design points involving v-factors. The

set of ′n′ - non central design points are extended to 2n design points by adding

′n′(n0 = n) central points just below or above the ′n′ non-central design points.

Hence 2n(= N) be the total number of design points of the slope rotatability for

second order response surface designs with tri-diagonal correlation error structure

using CCD.

Result (2.1): The design points (±1,±1, . . . ,±1)F ∪ (±α, . . . , 0)21 ∪ n0 will give

a v-dimensional SOSRD with tri-diagonal correlation error structure using CCD

in design points N = F + T , where α2 is positive real root of the fourth degree

polynomial equation,

[(8v(1− ρ)− 4N)]α8 + [8Fv(1− ρ)]α6 + [(2F (4− v)N + 2F 2v(1− ρ) + 16F (1− v))]α4

+[
(
16F 2(1− v)(1− ρ)

)
]α2 + [

(
4F 2(v − 1)N + 4F 3(1− v)(1− ρ)

)
] = 0

Note: Values of SOSRD under tri-diagonal correlation error structure using CCD

can be obtained by solving the above equation.

3 Measure of second order slope rotatability for corre-

lated structure of errors (Das and Park, 2009))

Following Das and Park (2009), equations (2.2) to (2.18) give necessary and suffi-

cient conditions for a measure for any second order response surface designs with
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correlated errors. Further we have,

V (bi) equal for all i,

V (bii) equal for all i

V (bij) equal for all i, j; where i 6= j

Cov(bi, bii) = Cov(bi, bij) = Cov(bii, bij) = Cov(bij , bil) = 0 for all i 6= j 6= l and for all ρ

(3.1)

Das and Park (2009) proposed that, if the conditions in (2.2) to (2.18) and (3.1) are

met, Mv(D) is the proposed measure of slope rotatability for second order response

surface designs for any correlated error structure.

Mv(D) =
1

1 +Qv(D)

where 2(v − 1)σ4Qv(D) = (v + 2)(v + 4)
v∑

i=1

[
(V (bi)− V̄ ) +

ai − ā
v + 2

]2

+
4

v(v + 2)

v∑

i=1

(ai − ā)2 + 2
v∑

i=1



(

4V (bii)
ai
v

)2
+

v∑

i=16=j

(
V (bij)

ai
v

)2



4(v + 4)


4Cov(bi, bii)

2 +

v∑

j=1;j 6=i
Cov(bi, bij)

2




4

v∑

l=1


4

v∑

j=1;j 6=i
Cov(bii, bij)

2


+

∑

j<l

v∑

l 6=i
Cov(bij , blj)

2 (3.2)

Here V̄ = 1
v

∑v
i=1 V (bi), ai = 4V (bii) +

∑v
j=1;j 6=i V (bij)(1 ≤ i ≤ v) and ā =

1
v

∑v
i=1 ai.

It can be easily shown that Qv(D)in equation (3.2) becomes zero for all values

n, if and only if the conditions in equations (3.1) hold. Further, it is simplified to

Qv(D) =
1

σ4
[4V (bii)− V (bij)]

2 . (3.3)

Note that 0 ≤Mv(D) ≤ 1, and it can be easily shown that Mv(D) is one if and only

if the design is slope rotatable with any correlated error structure for all values of ρ,

and Mv(D) approaches to zero as the design ′D′ deviates from the slope-rotatability

under specified correlated error structure.
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4 Measure of slope rotatability for second order re-

sponse surface designs with tri-diagonal correlation

error structure using central composite designs

Following Park and Kim (1992), Das and Park (2009), Surekha and Victorbabu

(2011), Rajyalakshmi and Victorbabu (2014) the proposed measure of slope-rotatability

for second order response surface designs with tri-diagonal correlation error struc-

ture using CCD is given below.

This well-known type of design consists of 2t(v) factorial points (±1,±1, . . . ,±1),

2v axial points of the form (±α, 0, . . . , 0) and a center point (0, 0, ..., 0) may be

replicated n0 times if necessary. The total number of factorial combinations in the

design can be written as N = F + T . Here F is total number of fractional points.

i.e., F = 2t(v) and T = 2v + n0.

Here we consider a slope rotatable central composite designs of Hader and Park

(1978) having n(n = F + 2v) non-central design points involving v-factors. The

set of n- non central design points are extended to 2n design points by adding

n(n0 = n) central points just below or above the n non-central design points. Hence

2n(= N) be the total number of design points of the slope rotatability for second

order response surface designs with tri-diagonal correlation error structure using

CCD.

The design points (±1,±1, ...,±1)F∪(±α, ..., 0)21∪n0, will give measure of slope

rotatability for second order response surface designs withtri-diagonal correlation

error structure using CCD. Here we have (2.2) are true. Further, from (2.3), (2.4),

and (2.5), we have,
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(I)
2n∑

u=1

X2
ui = F + 2α2 = 2nλ2

(II)
2n∑

u=1

X4
ui = F + 2α4 = c2nλ4

(III)
2n∑

u=1

X2
uiX

2
uj = F = 2nλ4 (4.1)

Measure of slope rotatability of second order response surface designs with tri-

diagonal correlation error structure using CCD can be obtained by

Mv(D) =
1

1 +Qv(D)

1 +Qv(D) =
1

σ4
[4V (bii)− V (bjj)]

2

=
1

σ4
[4G− (1− ρ2)σ2

F
]2 (4.2)

where G = V (bii) = (1− ρ2)σ2
[
(v−1)FT−F (v−1)ρ−4(v−1)Fα2+2[N−2(v−1)]α4

2α4[vFT−Fvρ−4vFα2+2[N−2v]α4]

]

If Mv(D) is one if and only if the design ‘D ’ is slope rotatable withtri-diagonal

correlationerror structure using CCD for all values of ρ and Mv(D) approaches to

zero as the design ‘D ’deviates from the slope-rotatability withtri-diagonal correla-

tion error structure using CCD.

Example:We illustrate the measure of slope-rotatability for second order re-

sponse surface designs withtri-diagonal correlated structure of errors with the help

of CCD for v=2 factors.

The design points (±1,±1,±1)22 ∪ (±α, ..., 0)21 ∪n0, will give slope rotatability

for second order response surface designs withtri-diagonal correlation error structure

in N = 16 design points for 2 factors. From equations in (4.1), we have

(I)
∑

X2
ui = 4 + 2α2 = Nλ2

(II)
∑

X4
ui = 4 + 2α4 = cNλ4

(III)
∑

X2
uiX

2
uj = 4 = Nλ4 (4.3)
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From (I), (II) and (III) of (4.3), we get λ2 = 4+2α2

16 , λ4 = 4
16 and c = 4+2α4

4

and Substituting λ2,λ4 and c in (3.5) and on simplification, we get the following

biquadratic equation in α2.

[16(1−ρ)−64]a8+64(1−ρ)a6+[256]a4−256(1−ρ)a2+[1024−256(1−ρ)] = 0 (4.4)

Equation (4.4) has only one positive real root for each value of ρ. This can be

alternatively written directly from result (2.1). Solving (4.4), we get α = 1.7254.

From (4.2) we get Qv(D) = 0 ,Mv(D) = 1 for value of ρ = 0.1.

Suppose if we take α = 1.3 instead of taking α = 1.7254 for 2 factors we get

Qv(D) = 0.1519 then Mv(D) = 0.8790(takingρ = 0.1) . Here Mv(D) deviates

from slope rotatability for second order response surface designs withtri-diagonal

correlation error structure.

4.1 Weak slope rotatability region for correlated errors(cf. Das

and Park (2009)

Following Das and Park (2009), we also find weak slope rotatability region (WSRR)

for second order response surface designs with tri-diagonal correlation error structure

using CCD.

Mv(D) ≥ k
Mv(D) involves the correlation parameter ρεW and as such, Mv(D) ≥ k for all ρ

is too strong to be met. On the other hand, for a given v, we can find range of values

of ρ for which Das and Park (2009) call this range as the weak slope rotatability

region (WSRR(RD(k)(ρ))) of the design ‘D’. Naturally, the desirability of using

‘D’ will rest on the wide nature of (WSRR(RD(k)(ρ))) along with its strength k.

Generally, we would require ‘v’ to be very high say, around 0.95 (cf. Das and Park

(2009)).

Table 1 and 2, gives the values of Mv(D) and weak slope rotatability region

(WSRR(RD(k)(ρ))) for second order slope rotatable designs with tri-diagonal cor-

relationerror structure using CCD for ρ(−0.9 ≤ ρ ≤ 0.9) and 2 ≤ v ≤ 8 (v number

of factors) respectively.
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Table 1: Measure of slope rotatability for second order response surface designs

(MV (D)) with tri-diagonal correlation error structure using CCD ρ(−0.9 ≤ ρ ≤ 0.9)

and for 2 ≤ v ≤ 4

v = 2, n=8, 2n=N= 16

ρ α

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 α∗

-0.9 0.7596 0.9009 0.9617 0.9964 0.9995 0.9963 0.9935 0.9917 2.1756

-0.8 0.6353 0.8578 0.9559 0.9974 0.9982 0.9919 0.9872 0.9841 2.105

-0.7 0.5614 0.8385 0.9593 0.9989 0.996 0.9875 0.9812 0.9771 2.0411

-0.6 0.5141 0.8313 0.9652 0.9998 0.9934 0.9831 0.9757 0.971 1.9836

-0.5 0.4831 0.8308 0.9713 0.9999 0.9907 0.9789 0.9708 0.9657 1.9321

-0.4 0.4628 0.8344 0.9769 0.9999 0.9879 0.9753 0.9667 0.9613 1.8863

-0.3 0.4503 0.8406 0.9819 0.9989 0.9853 0.9721 0.9633 0.9577 1.8457

-0.2 0.4439 0.8486 0.9859 0.9979 0.9831 0.9696 0.9607 0.9551 1.8097

-0.1 0.4428 0.8579 0.9894 0.9969 0.9812 0.9677 0.9589 0.9533 1.7781

0 0.4464 0.8681 0.9921 0.9959 0.9798 0.9666 0.9579 0.9525 1.7501

0.1 0.4546 0.8791 0.9942 0.9949 0.9789 0.9661 0.9579 0.9527 1.7254

0.2 0.4676 0.8906 0.9959 0.9942 0.9785 0.9665 0.9587 0.9538 1.7036

0.3 0.4861 0.9027 0.9972 0.9937 0.9788 0.9676 0.9604 0.9558 1.6843

0.4 0.5109 0.9153 0.9982 0.9934 0.9797 0.9695 0.9629 0.9589 1.6671

0.5 0.5438 0.9283 0.9989 0.9935 0.9813 0.9723 0.9666 0.9629 1.6517

0.6 0.5869 0.9417 0.9993 0.9939 0.9835 0.9759 0.9711 0.9681 1.6379

0.7 0.6446 0.9556 0.9997 0.9948 0.9865 0.9805 0.9766 0.9743 1.6255

0.8 0.7229 0.9699 0.9999 0.9961 0.9902 0.986 0.9833 0.9816 1.6143

0.9 0.8339 0.9847 0.9999 0.9978 0.9947 0.9925 0.9911 0.9902 1.6042
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Table 1 continued

v = 3, n=14, 2n=N= 28

ρ α

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 α∗

-0.9 0.7529 0.9595 0.9904 0.9976 0.9999 0.9998 0.9991 0.9985 2.4616

-0.8 0.6175 0.928 0.9843 0.997 0.9999 0.9994 0.9981 0.9969 2.3772

-0.7 0.5335 0.9035 0.9804 0.9969 0.9999 0.9988 0.997 0.9955 2.3028

-0.6 0.4776 0.8845 0.9779 0.9972 0.9999 0.9982 0.9959 0.9942 2.2386

-0.5 0.4391 0.8699 0.9766 0.9976 0.9999 0.9976 0.9951 0.9931 2.1843

-0.4 0.4122 0.8593 0.9759 0.9979 0.9997 0.9971 0.9942 0.9921 2.139

-0.3 0.3937 0.8519 0.9758 0.9983 0.9995 0.9965 0.9935 0.9913 2.1015

-0.2 0.3816 0.8474 0.9763 0.9986 0.9993 0.9961 0.9929 0.9907 2.0703

-0.1 0.3751 0.8456 0.9769 0.9989 0.9991 0.9957 0.9926 0.9903 2.0444

0 0.3733 0.8464 0.978 0.9991 0.9989 0.9955 0.9923 0.99 2.0226

0.1 0.3763 0.8496 0.9793 0.9993 0.9988 0.9953 0.9922 0.99 2.0226

0.2 0.3841 0.8552 0.9809 0.9995 0.9987 0.9953 0.9924 0.9902 1.9884

0.3 0.3975 0.8632 0.9826 0.9996 0.9987 0.9954 0.9926 0.9907 1.9749

0.4 0.4173 0.8738 0.9846 0.9997 0.9987 0.9956 0.9931 0.9913 1.9632

0.5 0.4457 0.8869 0.9867 0.9998 0.9987 0.9959 0.9938 0.9922 1.9529

0.6 0.4857 0.9028 0.989 0.9999 0.9988 0.9965 0.9946 0.9933 1.9438

0.7 0.5428 0.9217 0.9915 0.9999 0.999 0.9972 0.9957 0.9946 1.9358

0.8 0.6276 0.9439 0.9942 0.9999 0.9993 0.9979 0.9969 0.9962 1.9287

0.9 0.7619 0.9699 0.997 0.9999 0.9996 0.9989 0.9983 0.9979 1.9222
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Table 1 continued

v = 4, n=24, 2n=N= 48

ρ α

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 α∗

-0.9 0.7101 0.9555 0.9922 0.9984 0.9997 0.9999 0.9999 0.9998 2.7796

-0.8 0.5639 0.9191 0.9856 0.9971 0.9996 0.9999 0.9999 0.9996 2.6911

-0.7 0.4773 0.8895 0.98 0.9962 0.9995 0.9999 0.9998 0.9994 2.616

-0.6 0.4213 0.8655 0.9754 0.9955 0.9995 0.9999 0.9997 0.9992 2.5547

-0.5 0.3833 0.8463 0.9717 0.9949 0.9995 0.9999 0.9996 0.9989 2.5057

-0.4 0.3569 0.8314 0.9688 0.9946 0.9995 0.9999 0.9995 0.9988 2.4668

-0.3 0.3389 0.8203 0.9667 0.9944 0.9995 0.9999 0.9994 0.9987 2.4358

-0.2 0.3271 0.8127 0.9653 0.9943 0.9995 0.9999 0.9993 0.9986 2.4109

-0.1 0.3205 0.8084 0.9647 0.9943 0.9996 0.9999 0.9992 0.9985 2.3906

0 0.3184 0.8072 0.9647 0.9944 0.9996 0.9999 0.9992 0.9984 2.3738

0.1 0.3207 0.8091 0.9653 0.9947 0.9997 0.9999 0.9992 0.9984 2.3598

0.2 0.3275 0.8142 0.9666 0.9949 0.9997 0.9999 0.9992 0.9985 2.3479

0.3 0.3395 0.8224 0.9685 0.9953 0.9997 0.9999 0.9992 0.9985 2.3378

0.4 0.3577 0.8341 0.9711 0.9958 0.9998 0.9999 0.9992 0.9986 2.329

0.5 0.3842 0.8495 0.9743 0.9963 0.9999 0.9999 0.9993 0.9987 2.3214

0.6 0.4225 0.8689 0.9781 0.9969 0.9999 0.9999 0.9994 0.9989 2.3147

0.7 0.4787 0.8928 0.9826 0.9976 0.9999 0.9999 0.9995 0.9991 2.3087

0.8 0.5655 0.922 0.9877 0.9983 0.9999 0.9999 0.9996 0.9994 2.3034

0.9 0.7115 0.9573 0.9935 0.9991 0.9999 0.9999 0.9998 0.9997 2.2987



Measure of Slope Rotatability with Tri-Diagonal Error Stricture Using CCD 101

Table 2: Values of WSRRsRD(0.95)(ρ) for slope rotatability for second order response

surface designs with tri-diagonal correlation error structure using CCD for ρ(−0.9 ≤
ρ ≤ 0.9) and fo 2 ≤ v ≤ 8

v α

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1

2 - 0.7-0.9 0.7-0.9 -1.8 -1.8 -1.8 -1.8 -1.8

3 - - -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

4 - -0.9, 0.9 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

5 - - -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

6 - - -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

7 - - -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

8 - - -1.8 -1.8 -1.8 -1.8 -1.8 -1.8

Note 1: Here indicates that the values of slope rotatability for second order response

surface designs with tri-diagonal correlation error structure using CCD. For each

value of α∗, the MV (D) is equal to 1.

Note 2: Measure of slope rotatability for second order response surface designs

(MV (D)) with tri-diagonal correlation error structure using CCD ρ(−0.9 ≤ ρ ≤ 0.9)

and for 2 ≤ v ≤ 4 are available at the authors.

5 Conclusion

In this paper, the measure of slope rotatability for second order response surface

designs with tri-diagonal correlationerror structure using CCD is studied. The de-

gree of slope rotatability of the given design can be calculated for different values

of ρ(−0.9 ≤ ρ ≤ 0.9) and for 2 ≤ v ≤ 8 (v number of factors). By increasing α and

ρ values for different factors (v) the measure of slope rotatability values for second

order response surface design withtri-diagonal correlation error structure using CCD

are increased.
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